
William Underwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7143330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Arabidopsis</i> GOLD36/MVP1/ERMO3 Is Required for Powdery Mildew Penetration Resistance and Proper Targeting of the PEN3 Transporter. Molecular Plant-Microbe Interactions, 2022, 35, 393-400.	1.4	1
2	Multiple Species of Asteraceae Plants Are Susceptible to Root Infection by the Necrotrophic Fungal Pathogen <i>Sclerotinia sclerotiorum</i> . Plant Disease, 2022, 106, 1366-1373.	0.7	2
3	Genomic Insights Into Sclerotinia Basal Stalk Rot Resistance Introgressed From Wild Helianthus praecox Into Cultivated Sunflower (Helianthus annuus L.). Frontiers in Plant Science, 2022, 13, .	1.7	5
4	A Quantitative Genetic Study of Sclerotinia Head Rot Resistance Introgressed from the Wild Perennial Helianthus maximiliani into Cultivated Sunflower (Helianthus annuus L.). International Journal of Molecular Sciences, 2022, 23, 7727.	1.8	4
5	A Greenhouse Method to Evaluate Sunflower Quantitative Resistance to Basal Stalk Rot Caused by <i>Sclerotinia sclerotiorum</i> . Plant Disease, 2021, 105, 464-472.	0.7	12
6	Determination of Virulence Phenotypes of <i>Plasmopara halstedii</i> in the United States. Plant Disease, 2020, 104, 2823-2831.	0.7	16
7	Registration of oilseed sunflower maintainer germplasm HA 489 with resistance to the banded sunflower moth. Journal of Plant Registrations, 2020, 14, 197-202.	0.4	1
8	Genetic Dissection of Phomopsis Stem Canker Resistance in Cultivated Sunflower Using High Density SNP Linkage Map. International Journal of Molecular Sciences, 2020, 21, 1497.	1.8	11
9	Unraveling the Sclerotinia Basal Stalk Rot Resistance Derived From Wild Helianthus argophyllus Using a High-Density Single Nucleotide Polymorphism Linkage Map. Frontiers in Plant Science, 2020, 11, 617920.	1.7	8
10	<scp>PMR</scp> 5, an acetylation protein at the intersection of pectin biosynthesis and defense against fungal pathogens. Plant Journal, 2019, 100, 1022-1035.	2.8	34
11	Introgression and monitoring of wild Helianthus praecox alien segments associated with Sclerotinia basal stalk rot resistance in sunflower using genotyping-by-sequencing. PLoS ONE, 2019, 14, e0213065.	1.1	7
12	Registration of Oilseed Sunflower Germplasms RHA 485, RHA 486, and HA 487, Selected for Resistance to Phomopsis Stalk Canker and Sclerotinia, in a Highâ€Yielding and Highâ€Oil Background. Journal of Plant Registrations, 2019, 13, 439-442.	0.4	6
13	An Arabidopsis Lipid Flippase Is Required for Timely Recruitment of Defenses to the Host–Pathogen Interface at the Plant Cell Surface. Molecular Plant, 2017, 10, 805-820.	3.9	30
14	Phosphorylation is required for the pathogen defense function of the Arabidopsis PEN3 ABC transporter. Plant Signaling and Behavior, 2017, 12, e1379644.	1.2	15
15	Contributions of host cellular trafficking and organization to the outcomes of plant-pathogen interactions. Seminars in Cell and Developmental Biology, 2016, 56, 163-173.	2.3	6
16	Perception of conserved pathogen elicitors at the plasma membrane leads to relocalization of the <i>Arabidopsis</i> PEN3 transporter. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12492-12497.	3.3	91
17	Induction and Suppression of PEN3 Focal Accumulation During <i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000 Infection of <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2013, 26, 861-867.	1.4	43
18	The Plant Cell Wall: A Dynamic Barrier Against Pathogen Invasion. Frontiers in Plant Science, 2012, 3, 85.	1.7	322

WILLIAM UNDERWOOD

#	Article	IF	CITATIONS
19	Visualizing Cellular Dynamics in Plant–Microbe Interactions Using Fluorescent-Tagged Proteins. Methods in Molecular Biology, 2011, 712, 283-291.	0.4	4
20	Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468, 527-532.	13.7	1,258
21	Mitogen-Activated Protein Kinases 3 and 6 Are Required for Full Priming of Stress Responses in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2009, 21, 944-953.	3.1	458
22	Role of Stomata in Plant Innate Immunity and Foliar Bacterial Diseases. Annual Review of Phytopathology, 2008, 46, 101-122.	3.5	582
23	Focal accumulation of defences at sites of fungal pathogen attack. Journal of Experimental Botany, 2008, 59, 3501-3508.	2.4	65
24	Role of plant stomata in bacterial invasion. Cellular Microbiology, 2007, 9, 1621-1629.	1.1	142
25	The <i>Pseudomonas syringae</i> type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in <i>Arabidopsis thaliana</i> . Plant Journal, 2007, 52, 658-672.	2.8	97
26	Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell, 2006, 126, 969-980.	13.5	1,653
27	Genome-wide transcriptional analysis of theArabidopsis thalianainteraction with the plant pathogenPseudomonas syringaepv.tomatoDC3000 and the human pathogenEscherichia coliO157:H7. Plant Journal, 2006, 46, 34-53.	2.8	349