Deqing Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7143107/publications.pdf

Version: 2024-02-01

933447 642732 24 563 10 23 citations h-index g-index papers 24 24 24 1275 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Advances, 2016, 6, 38079-38091.	3.6	154
2	Interfacial engineering by using self-assembled monolayer in mesoporous perovskite solar cell. RSC Advances, 2015, 5, 94290-94295.	3.6	76
3	Large Planar π-Conjugated Porphyrin for Interfacial Engineering in p-i-n Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 27438-27443.	8.0	70
4	Fabrication of Asymmetric Molecular Junctions by the Oriented Assembly of Dithiocarbamate Rectifiers. Journal of the American Chemical Society, 2011, 133, 5921-5930.	13.7	52
5	Chargeâ€6torage Aromatic Amino Compounds for Nonvolatile Organic Transistor Memory Devices. Small, 2018, 14, e1800756.	10.0	36
6	A series of porphyrins as interfacial materials for inverted perovskite solar cells. Organic Electronics, 2020, 77, 105522.	2.6	18
7	Thieno[3,2-b]indole (TI) bridged A-ï€â^'D-ï€â^'A small molecules: Synthesis, characterizations and organic solar cell applications. Dyes and Pigments, 2019, 160, 16-24.	3.7	16
8	A Double-Cable Poly(fluorene- <i>alt</i> -thiophene) with Bay-Substituted Perylenediimide Pendants: An Efficient Interfacial Material in Bulk-Heterojunction Solar Cells. Macromolecules, 2018, 51, 80-90.	4.8	15
9	A Dopantâ€Free Zwitterionic Conjugated Polyelectrolyte as a Hole‶ransporting and Interfacial Material for Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000206.	5.8	14
10	Two Symmetrically Bisâ€substituted Pyrene Derivatives: Synthesis, Photoluminescence, and Electroluminescence. Chinese Journal of Chemistry, 2015, 33, 967-973.	4.9	13
11	Study of Karstedt's Catalyst for Hydrosilylation of a Wide Variety of Functionalized Alkenes with Triethoxysilane and Trimethoxysilane. Chinese Journal of Chemistry, 2017, 35, 1227-1230.	4.9	13
12	Increasing Stability of SnO ₂ -Based Perovskite Solar Cells by Introducing an Anionic Conjugated Polyelectrolyte for Interfacial Adjustment. ACS Applied Materials & Samp; Interfaces, 2021, 13, 24575-24581.	8.0	12
13	(Dicyclopentadiene) platinum(II) dichloride: An efficient catalyst for the hydrosilylation reaction between alkenes and triethoxysilane. Tetrahedron Letters, 2017, 58, 1576-1578.	1.4	10
14	1,8‧ubstituted Pyrene Derivatives for Highâ€Performance Organic Fieldâ€Effect Transistors. Chemistry - an Asian Journal, 2018, 13, 3920-3927.	3.3	10
15	Two Anthracene-Based Copolymers as the Hole-Transporting Materials for High-Performance Inverted (p-i-n) Perovskite Solar Cells. Macromolecules, 2018, 51, 7407-7416.	4.8	10
16	Synthesis, characterization and electroluminescence of two highly-twisted non-doped blue light-emitting materials. Optical Materials, 2018, 78, 94-101.	3.6	9
17	Importance and Advancement of Modification Engineering in Perovskite Solar Cells. Solar Rrl, 2022, 6,	5.8	8
18	Resistive Switching of Tetraaniline Films: From Ultrathin Monolayers to Robust Polymeric Blends. Chemistry of Materials, 2013, 25, 3603-3613.	6.7	7

#	Article	IF	CITATION
19	Development of Pyrene Derivatives as Promising nâ€Type Semiconductors: Synthesis, Structural and Spectral Properties. Asian Journal of Organic Chemistry, 2017, 6, 1903-1913.	2.7	7
20	Synthesis of Fluoro and Cyanoarylâ€Containing Pyrene Derivatives and their Optical and Electrochemical Properties. Asian Journal of Organic Chemistry, 2019, 8, 722-730.	2.7	7
21	Preparation of nonâ€covalent Metalloporphyrin/C ₆₀ Composite and its Electrocatalysis to Hydrogen Peroxide. Electroanalysis, 2017, 29, 696-701.	2.9	3
22	Influence of the intramolecular donor-acceptor distance on the performance of double-cable polymers. European Polymer Journal, 2019, 112, 38-44.	5.4	2
23	Study of the pyridyl-containing charge-trapping functional materials in the organic field effect transistor memory devices. Dyes and Pigments, 2021, 188, 109159.	3.7	1
24	Inside Cover: Study of Karstedt's Catalyst for Hydrosilylation of a Wide Variety of Functionalized Alkenes with Triethoxysilane and Trimethoxysilane (Chin. J. Chem. 8/2017). Chinese Journal of Chemistry, 2017, 35, 1198-1198.	4.9	0