Eduardo SuÃ;rez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7143100/publications.pdf

Version: 2024-02-01

840776 839539 34 363 11 18 citations h-index g-index papers 36 36 36 265 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Numerical study of the impact of windblown sand particles on a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145, 87-93.	3.9	41
2	CFD analysis of the aerodynamic effects on the stability of the flight of a quadcopter UAV in the proximity of walls and ground. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206, 104378.	3.9	37
3	Development of a Predictive CFD Fouling Model for Diesel Engine Exhaust Gas Systems. Heat Transfer Engineering, 2013, 34, 674-682.	1.9	36
4	Numerical methodology for evaluating the effect of sleepers in the underbody flow of a high-speed train. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 167, 140-147.	3.9	35
5	On the effect of surface roughness and material on the subcooled flow boiling of water: Experimental study and global correlation. Experimental Thermal and Fluid Science, 2015, 64, 114-124.	2.7	28
6	CFD transient simulation of the cough clearance process using an Eulerian wall film model. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 142-152.	1.6	21
7	Experimental study of soot particle fouling on ribbed plates: Applicability of the critical local wall shear stress criterion. Experimental Thermal and Fluid Science, 2013, 44, 364-373.	2.7	20
8	Assessment of the methodology for the CFD simulation of the flight of a quadcopter UAV. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 218, 104776.	3.9	19
9	Effect of realistic ballasted track in the underbody flow of a high-speed train via CFD simulations. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184, 1-9.	3.9	15
10	Development of a Computational Fluid Dynamics Model for Predicting Fouling Process Using Dynamic Mesh Model. Heat Transfer Engineering, 2020, 41, 199-207.	1.9	15
11	Glottis effects on the cough clearance process simulated with a CFD dynamic mesh and Eulerian wall film model. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 1326-1338.	1.6	14
12	Experimental evaluation of the critical local wall shear stress around cylindrical probes fouled by diesel exhaust gases. Experimental Thermal and Fluid Science, 2012, 38, 85-93.	2.7	13
13	Fouling evolution on ribbed surfaces under EGR dry soot conditions: Experimental measurements and 3D model validation. International Journal of Thermal Sciences, 2020, 151, 106271.	4.9	12
14	Analysis of the volume of fluid (VOF) method for the simulation of the mucus clearance process with CFD. Computer Methods in Biomechanics and Biomedical Engineering, 2019, 22, 547-566.	1.6	11
15	Evolution of EGR cooler deposits under hydrocarbon condensation: Analysis of local thickness, roughness, and fouling layer density. International Journal of Thermal Sciences, 2021, 161, 106744.	4.9	11
16	FSI modeling on the effect of artery-aneurysm thickness and coil embolization in patient cases. Computer Methods and Programs in Biomedicine, 2021, 206, 106148.	4.7	8
17	New methodology for CFD simulations of compact evaporators used in automotive ORC systems. International Journal of Thermal Sciences, 2019, 143, 14-26.	4.9	5
18	CFD Transient Simulation of a Breathing Cycle in an Oral-Nasal Extrathoracic Model. Journal of Applied Fluid Mechanics, 2017, 10, 777-784.	0.2	4

#	Article	IF	Citations
19	Numerical modelling of osteocyte growth on different bone tissue scaffolds. Computer Methods in Biomechanics and Biomedical Engineering, 2022, 25, 641-655.	1.6	3
20	CFD simulation of a CT scan oral-nasal extrathoracic model. WIT Transactions on Engineering Sciences, 2013, , .	0.0	3
21	CFD implementation and experimental validation of the Chen model for heat transfer in nucleate boiling. , 2013, , .		3
22	CFD Simulation of the Oral-Nasal Flow Partitioning During a Breathing Cycle Based on the Soft Palate Movement. Smart Innovation, Systems and Technologies, 2018, , 35-45.	0.6	2
23	Development of a Pattern Recognition Methodology with Thermography and Implementation in an Experimental Study of a Boiler for a WHRS-ORC. Sensors, 2019, 19, 1680.	3.8	1
24	Numerical Modelling of Fouling Process in EGR System: A Review. , 0, , .		1
25	Eulerian model for the prediction of nucleate boiling of refrigerant in heat exchangers. , 2010, , .		1
26	The simulation of a Rankine based Waste Heat Recovery system for a heavy duty diesel engine. WIT Transactions on Engineering Sciences, 2014, , .	0.0	1
27	Aerodynamic Simulations of High-Speed Trains. , 0, , .		1
28	Computational model for particle deposition in turbulent gas flows for CFD codes. , 2010, , .		1
29	Pressure Drop in Protective Metal Meshes in Clean Low EGR Loop .,0,,.		O
30	CFD Numerical Simulation of HP-EGR Cooler Performance Under Pulsating Engine Conditions. , 0, , .		0
31	Aerodynamic Simulations of High-Speed Trains for the Technical Specification of Interoperability. International Journal of Railway Technology, 2015, 4, 89-102.	0.3	О
32	DEVELOPMENT OF AN ONLINE TOOL BASED ON CFD AND OBJECT-ORIENTED PROGRAMMING TO SUPPORT TEACHING FLUID MECHANICS. , 2019 , , .		0
33	Comparison of Turbulent Models applied to the Aerodynamics of a High Speed Train. , 0, , .		0
34	A Computational Fluid Dynamics Comparison of the Underflow of Different Commercial High-Speed Trains. , 0, , .		0