

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7143060/publications.pdf Version: 2024-02-01

		66234	106150
112	4,831	42	65
papers	citations	h-index	g-index
112	112	112	7331
all docs	docs citations	times ranked	citing authors

ARTICLE IF CITATIONS Zinc oxide nanorod and nanowire for humidity sensor. Applied Surface Science, 2005, 242, 212-217. 3.1 396 Hollow Structured Micro/Nano MoS₂ Spheres for High Electrocatalytic Activity 2 4.0 190 Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2016, 8, 5517-5525. Hydrothermal Synthesis of Novel MoS₂/BiVO₄ Hetero-Nanoflowers with Enhanced Photocatalytic Activity and a Mechanism Investigation. Journal of Physical Chemistry C, 1.5 189 2015, 119, 22681-22689. Synthesis of Au-Decorated V₂O₅@ZnO Heteronanostructures and Enhanced 4.0 135 Plasmonic Photocatalytic Activity. ACS Applied Materials & amp; Interfaces, 2014, 6, 14851-14860. MoS₂/Graphene Hybrid Nanoflowers with Enhanced Electrochemical Performances as 1.5 Anode for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 7959-7968. The combinations of hollow MoS₂ micro@nano-spheres: one-step synthesis, excellent 2.7 116 6 photocatalytic and humidity sensing properties. Journal of Materials Chemistry C, 2014, 2, 5422-5430. Synergistic Effect of MoS₂ Nanosheets and VS₂ for the Hydrogen Evolution Reaction with Enhanced Humidity-Sensing Performance. ACS Applied Materials & amp; Interfaces, 2017, 9, 4.0 42139-42148. Significant improvement of field emission by depositing zinc oxide nanostructures on screen-printed 8 1.5108 carbon nanotube films. Applied Physics Letters, 2006, 88, 153123. Room-temperature high-sensitivity H2S gas sensor based on dendritic ZnO nanostructures with 1.1 107 macroscale in appearance. Journal of Applied Physics, 2008, 103, . Charge-Transfer Induced High Efficient Hydrogen Evolution of MoS2/graphene Cocatalyst. Scientific 10 1.6 105 Reports, 2015, 5, 18730. Firework-shaped TiO₂ microspheres embedded with few-layer MoS₂ as an anode material for excellent performance lithium-ion batteries. Journal of Materials Chemistry A, 104 2015, 3, 6392-6401. VO₂(p)-V₂C(MXene) Grid Structure as a Lithium Polysulfide Catalytic Host for 12 4.0 100 High-Performance`Lí–S Battery. ACS Applied Materials & amp; Interfaces, 2019, 11, 44282-44292. Coral-Shaped MoS₂ Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Correct Structure (2017, 2017). 4.0 98 9, 3653-3660. Facile synthesis of novel MoS₂@SnO₂ hetero-nanoflowers and enhanced 14 1.6 86 photocatalysis and field-emission properties. Dalton Transactions, 2014, 43, 13136-13144. Synthesis and field emission of four kinds of ZnO nanostructures: nanosleeve-fishes, radial nanowire 1.3 arrays, nanocombs and nanoflowers. Nanotechnology, 2006, 17, 2855-2859. Hydrothermal synthesis of VO2 (B) nanostructures and application in aqueous Li-ion battery. Electrochimica Acta, 2011, 56, 2122-2126. 16 2.6 81 Fabrication and theoretical investigation of MoS2-Co3S4 hybrid hollow structure as electrode material for lithium-ion batteries and supercapacitors. Chemical Engineering Journal, 2018, 347, 6.6 607-617.

KE VI

6.7

72

Porous V2O5 micro/nano-tubes: Synthesis via a CVD route, single-tube-based humidity sensor and 18 improved Li-ion storage properties. Journal of Materials Chemistry, 2012, 22, 5013.

4

#	Article	IF	CITATIONS
19	Synthesis of the MoS2@CuO heterogeneous structure with improved photocatalysis performance and H2O adsorption analysis. Dalton Transactions, 2015, 44, 10438-10447.	1.6	70
20	Facile synthesis of p-type Cu2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities. Nanoscale, 2012, 4, 7817.	2.8	68
21	Highly efficient field emission properties of a novel layered VS ₂ /ZnO nanocomposite and flexible VS ₂ 2 nanosheet. Journal of Materials Chemistry C, 2014, 2, 4196-4202.	2.7	66
22	Controllable synthesis of novel Cu ₂ O micro/nano-crystals and their photoluminescence, photocatalytic and field emission properties. CrystEngComm, 2012, 14, 278-285.	1.3	65
23	2D organ-like molybdenum carbide (MXene) coupled with MoS ₂ nanoflowers enhances the catalytic activity in the hydrogen evolution reaction. CrystEngComm, 2020, 22, 1395-1403.	1.3	63
24	Cu ₃ BiS ₃ /MXenes with Excellent Solar–Thermal Conversion for Continuous and Efficient Seawater Desalination. ACS Applied Materials & Interfaces, 2021, 13, 16246-16258.	4.0	60
25	2D heterogeneous vanadium compound interfacial modulation enhanced synergistic catalytic hydrogen evolution for full pH range seawater splitting. Nanoscale, 2020, 12, 6176-6187.	2.8	60
26	Synthesis of V2O5 nanostructures with various morphologies and their electrochemical and field-emission properties. Chemical Engineering Journal, 2012, 188, 64-70.	6.6	55
27	High photocatalytic performance of a type-II α-MoO ₃ @MoS ₂ heterojunction: from theory to experiment. Physical Chemistry Chemical Physics, 2016, 18, 14074-14085.	1.3	55
28	Cu2S@ZnO hetero-nanostructures: facile synthesis, morphology-evolution and enhanced photocatalysis and field emission properties. CrystEngComm, 2013, 15, 1753.	1.3	54
29	Preparation of hollow microsphere@onion-like solid nanosphere MoS ₂ coated by a carbon shell as a stable anode for optimized lithium storage. Nanoscale, 2016, 8, 420-430.	2.8	53
30	Stabilizing Ti3C2Tx-MXenes with TiOF2 nanospheres intercalation to improve hydrogen evolution reaction and humidity-sensing performance. Applied Surface Science, 2019, 496, 143729.	3.1	52
31	Multi-slice nanostructured WS ₂ @rGO with enhanced Li-ion battery performance and a comprehensive mechanistic investigation. Physical Chemistry Chemical Physics, 2015, 17, 29824-29833.	1.3	51
32	Metal-organic frameworks-derived CoP anchored on MXene toward an efficient bifunctional electrode with enhanced lithium storage. Chemical Engineering Journal, 2021, 416, 129102.	6.6	51
33	Ultrathin Ti2NTx MXene-wrapped MOF-derived CoP frameworks towards hydrogen evolution and water oxidation. Electrochimica Acta, 2021, 393, 139068.	2.6	51
34	Dual-mode protein detection based on Fe3O4-Au hybrid nanoparticles. Nano Research, 2012, 5, 272-282.	5.8	50
35	Heterostructure nanohybrids of Ni-doped MoSe2 coupled with Ti2NTx toward efficient overall water splitting. Electrochimica Acta, 2020, 353, 136598.	2.6	50
36	Experimental and First-Principles Investigation of MoWS ₂ with High Hydrogen Evolution Performance. ACS Applied Materials & Interfaces, 2016, 8, 29442-29451.	4.0	49

#	Article	IF	CITATIONS
37	TaS ₂ nanosheet-based ultrafast response and flexible humidity sensor for multifunctional applications. Journal of Materials Chemistry C, 2019, 7, 9284-9292.	2.7	48
38	Controllable Synthesis of In2O3Nanocubes, Truncated Nanocubes, and Symmetric Multipods. Journal of Physical Chemistry C, 2007, 111, 16267-16271.	1.5	47
39	Electrochemical Oxidative Halogenation of <i>N</i> -Aryl Alkynamides for the Synthesis of Spiro[4.5]trienones. Journal of Organic Chemistry, 2021, 86, 917-928.	1.7	46
40	Enhanced field emission and photocatalytic performance of MoS ₂ titania nanoheterojunctions via two synthetic approaches. Dalton Transactions, 2015, 44, 1664-1672.	1.6	43
41	Synthesis and humidity sensing properties of feather-like ZnO nanostructures with macroscale in shape. Sensors and Actuators A: Physical, 2008, 143, 245-250.	2.0	42
42	Morphology-control of VO2 (B) nanostructures in hydrothermal synthesis and their field emission properties. Applied Surface Science, 2011, 257, 8840-8845.	3.1	42
43	A functional design and synthesization for electrocatalytic hydrogen evolution material on MoS2/Co3S4 hybrid hollow nanostructure. Electrochimica Acta, 2018, 269, 262-273.	2.6	42
44	Field emission from GaN nanobelts with herringbone morphology. Materials Letters, 2004, 58, 2893-2896.	1.3	41
45	Novel dual-petal nanostructured WS ₂ @MoS ₂ with enhanced photocatalytic performance and a comprehensive first-principles investigation. Journal of Materials Chemistry A, 2015, 3, 20225-20235.	5.2	41
46	Room-temperature ferromagnetism properties of Cu-doped SnO2 nanowires. Journal of Applied Physics, 2010, 107, 014303.	1.1	38
47	3R TaS ₂ Surpasses the Corresponding 1T and 2H Phases for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2018, 122, 2382-2390.	1.5	38
48	Fabrication and Temperature-Dependent Field-Emission Properties of Bundlelike VO ₂ Nanostructures. ACS Applied Materials & Interfaces, 2011, 3, 2057-2062.	4.0	37
49	Field emission behavior of cuboid zinc oxide nanorods on zinc-filled porous silicon. Solid State Communications, 2005, 133, 43-47.	0.9	36
50	Large-scale synthesis of ZnO flower-like and brush pen-like nanostructures by a hydrothermal decomposition route. Materials Letters, 2007, 61, 3469-3472.	1.3	33
51	Efficient field emission from tetrapod-like zinc oxide nanoneedles. Materials Letters, 2005, 59, 1866-1870.	1.3	32
52	Porous ZnO nanobelts evolved from layered basic zinc acetate nanobelts. Applied Surface Science, 2008, 254, 3517-3521.	3.1	32
53	Low-temperature CVD synthesis of patterned core–shell VO ₂ @ZnO nanotetrapods and enhanced temperature-dependent field-emission properties. Nanoscale, 2014, 6, 11820-11827	2.8	32
54	Humidity Sensing Properties of Flowerâ€Like VO ₂ (B) and VO ₂ (M) Nanostructures. Electroanalysis, 2011, 23, 1752-1758.	1.5	31

#	Article	IF	CITATIONS
55	Vanadium based carbide–oxide heterogeneous V ₂ O ₅ @V ₂ C nanotube arrays for high-rate and long-life lithium–sulfur batteries. Nanoscale, 2020, 12, 18950-18964.	2.8	31
56	Investigation of electrical and ammonia sensing characteristics of Schottky barrier diode based on a single ultra-long ZnO nanorod. Applied Surface Science, 2008, 254, 5736-5740.	3.1	28
57	Controlled synthesis of Cu2S microrings and their photocatalytic and field emission properties. Chemical Engineering Journal, 2013, 230, 236-243.	6.6	27
58	Experimental and theoretical investigation on MoS ₂ /MXene heterostructure as an efficient electrocatalyst for hydrogen evolution in both acidic and alkaline media. New Journal of Chemistry, 2020, 44, 7902-7911.	1.4	27
59	Self-Assembled Vanadium Oxide Nanoflakes for p-Type Ammonia Sensors at Room Temperature. Nanomaterials, 2019, 9, 317.	1.9	26
60	Growth and optical applications of centimeter-long ZnO nanocombs. Nano Research, 2008, 1, 221-228.	5.8	25
61	Electrochemical Oxidationâ€induced Difunctionalization of Alkynes and Alkenes with Sulfonyl Hydrazides: Facile Access to β‧elenovinyl Sulfones and βâ€Ketosulfones. Asian Journal of Organic Chemistry, 2020, 9, 1760-1764.	1.3	25
62	Synthesis, optical and field emission properties of three different ZnO nanostructures. Materials Letters, 2007, 61, 3890-3892.	1.3	23
63	Synthesis, field emission and humidity sensing characteristics of monoclinic VO2 nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1720-1725.	1.3	23
64	Synthesis of a MoS2@MWNT nanostructure with enhanced field emission and electrochemical properties. RSC Advances, 2013, 3, 10994.	1.7	23
65	ZnO nanostructures with different morphologies and their field emission properties. Applied Surface Science, 2006, 252, 8410-8413.	3.1	22
66	Structure and humidity sensing properties of SnO ₂ zigzag belts. Crystal Research and Technology, 2010, 45, 539-544.	0.6	22
67	Shape evolution, photoluminescence and degradation properties of novel Cu2O micro/nanostructures. Applied Physics A: Materials Science and Processing, 2012, 108, 709-717.	1.1	22
68	Metalâ€Free Electrochemical Coupling of Vinyl Azides: Synthesis of Phenanthridines and <i>β</i> â€Ketosulfones. European Journal of Organic Chemistry, 2020, 2020, 6135-6145.	1.2	22
69	Oxygen-Terminated Nb ₂ CO ₂ MXene with Interfacial Self-Assembled COF as a Bifunctional Catalyst for Durable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2022, 14, 10738-10746.	4.0	22
70	Synthesis and field emission of patterned ZnO nanorods. Current Applied Physics, 2007, 7, 702-706.	1.1	21
71	Synthesis and field emission of two kinds of ZnO nanotubes: taper-like and flat-roofed tubes. Applied Physics A: Materials Science and Processing, 2008, 90, 739-743.	1.1	21
72	First-Principle and Experiment Framework for Charge Distribution at the Interface of the Molybdenum Dichalcogenide Hybrid for Enhanced Electrochemical Hydrogen Generation. Journal of Physical Chemistry C, 2016, 120, 15096-15104.	1.5	21

#	Article	IF	CITATIONS
73	Synthesis and field-emission properties of In2O3 nanostructures. Materials Letters, 2008, 62, 2710-2713.	1.3	20
74	Preparation of yolk-shell MoS2 nanospheres covered with carbon shell for excellent lithium-ion battery anodes. Applied Surface Science, 2018, 434, 1021-1029.	3.1	20
75	Few-layer MoS2 dendrites as a highly active humidity sensor. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116, 113782.	1.3	20
76	Flower-petal-like Nb2C MXene combined with MoS2 as bifunctional catalysts towards enhanced lithium-sulfur batteries and hydrogen evolution. Electrochimica Acta, 2022, 404, 139781.	2.6	19
77	Optical properties of SiO2 and ZnO nanostructured replicas of butterfly wing scales. Nano Research, 2011, 4, 737-745.	5.8	18
78	Differently structured MoS2 for the hydrogen production application and a mechanism investigation. Journal of Alloys and Compounds, 2016, 685, 65-69.	2.8	17
79	Fabrication of highly ordered and stepped ZnO comb-like structures. Applied Surface Science, 2007, 253, 6835-6839.	3.1	16
80	Novel In2O3 nanostructures fabricated by controlling the kinetics factor for field emission display. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1502-1508.	1.3	15
81	Electrochemical performance of B and M phases VO ₂ nanoflowers. Crystal Research and Technology, 2011, 46, 507-510.	0.6	14
82	First-principle and experiment investigation of MoS2@SnO2 nano-heterogeneous structures with enhanced humidity sensing performance. Journal of Applied Physics, 2016, 119, .	1.1	13
83	NiS ₂ Nanocubes Coated Ti ₃ C ₂ Nanosheets with Enhanced Lightâ€toâ€Heat Conversion for Fast and Efficient Solar Seawater Steam Generation. Solar Rrl, 2021, 5, 2100183.	3.1	13
84	Electrochemical Sulfonylation-Induced Lactonization of Alkenes: Synthesis of Sulfonyl Phthalides. Journal of Organic Chemistry, 2022, 87, 1208-1217.	1.7	13
85	Interfacial superassembly of MoSe ₂ @Ti ₂ N MXene hybrids enabling promising lithium-ion storage. CrystEngComm, 2020, 22, 5995-6002.	1.3	12
86	Electrochemical Oxidative Cross-Coupling between Vinyl Azides and Thiophenols: Synthesis of gem-Bisarylthio Enamines. Journal of Organic Chemistry, 2021, 86, 15946-15952.	1.7	12
87	Field emission and room temperature ferromagnetism properties of triangle-like ZnO nanosheets. Applied Surface Science, 2009, 256, 208-212.	3.1	11
88	Controllable synthesis and field emission enhancement of Al2O3coated In2O3core–shell nanostructures. Journal Physics D: Applied Physics, 2011, 44, 105301.	1.3	11
89	Room-temperature blue–violet laser emission from individual ultra-long ZnO microbelts. Materials Letters, 2014, 121, 231-233.	1.3	11
90	Polarized photoluminescence study of whispering gallery mode polaritons in ZnO microcavity. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 133-136.	0.8	10

#	Article	IF	CITATIONS
91	Evolution in shapes of a series of (111)-based In2O3 particles. Applied Physics A: Materials Science and Processing, 2007, 90, 113-117.	1.1	9
92	Temperature dependent photoluminescence properties of needle-like ZnO nanostructures deposited on carbon nanotubes. Applied Physics A: Materials Science and Processing, 2011, 105, 463-468.	1.1	9
93	Synthesis of a finger-like MoS ₂ @VS ₂ micro–nanocomposite with enhanced field emission performance. CrystEngComm, 2020, 22, 3797-3803.	1.3	9
94	Synthesis of ZnO nanostructures on CuO catalyzed porous silicon substrate. Materials Letters, 2005, 59, 3525-3529.	1.3	8
95	Controllable synthesis and field emission properties of In ₂ O _{3 } nanostructures. Crystal Research and Technology, 2010, 45, 173-177.	0.6	8
96	Porous Co ₃ O ₄ stabilized VS ₂ nanosheets obtained with a MOF template for the efficient HER. CrystEngComm, 2021, 23, 5097-5105.	1.3	8
97	Controllable synthesis of novel In ₂ O ₃ nanostructures and their field emission properties. Crystal Research and Technology, 2011, 46, 90-94.	0.6	7
98	MoS2 compounded bidirectionally with TiO2 for hydrogen evolution reaction with enhanced humidity sensing performance. Materials Science in Semiconductor Processing, 2018, 82, 75-81.	1.9	7
99	Marigold-like Cu x (x = 1.81 , 2) S \$mbox{Cu}_{x (x=1.81, 2)}mbox{S}\$ nanocrystals: controllable synthesis, field emission, and photocatalytic properties. Applied Physics A: Materials Science and Processing, 2014, 115, 801-808.	1.1	6
100	On the role of grain boundaries in nanocrystalline Î ³ -Fe2O3 under high pressure. Journal of Applied Physics, 2012, 111, 063718.	1.1	5
101	Color-tunable magnetic and luminescent hybrid nanoparticles: Synthesis, optical and magnetic properties. Applied Surface Science, 2012, 258, 3744-3749.	3.1	5
102	Cracked eight-awn star TaS ₂ with fractal structures used as an efficient electrocatalyst for the hydrogen evolution reaction. CrystEngComm, 2019, 21, 3517-3524.	1.3	5
103	Synthesis and room-temperature ferromagnetism of cobalt-doped SnO2 nanowires. Journal of Materials Research, 2009, 24, 2001-2005.	1.2	4
104	Synthesis, optical and field emission properties of ZnO microhair-clasps. Applied Surface Science, 2009, 255, 6487-6492.	3.1	4
105	Controlled synthesis of novel rod-like Cu 1.81 S nanostructures and field emission properties. Applied Surface Science, 2014, 315, 235-240.	3.1	4
106	Two-step synthesis of novel Cu2S nanoflowers for field emission application. Materials Letters, 2014, 137, 56-58.	1.3	4
107	First-principles calculations on strain and electric field induced band modulation and phase transition of bilayer WSe 2 MoS 2 heterostructure. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 98, 17-22.	1.3	4
108	Efficient field emission from electrochemically fabricated silicon nanocrystallite films. Physica B: Condensed Matter, 2004, 348, 391-396.	1.3	3

#	Article	IF	CITATIONS
109	Synthesis and Field Emission Properties of Hierarchical ZnO Nanostructures. Journal of Nanomaterials, 2010, 2010, 1-5.	1.5	3
110	On the performance and power consumption analysis of elastic clouds. Concurrency Computation Practice and Experience, 2016, 28, 4367-4384.	1.4	3
111	First-principles and experimental investigation of carbon-coated MoS ₂ hollow nanosphere heterogeneous structures with enhanced hydrogen evolution performance. New Journal of Chemistry, 2019, 43, 17502-17510.	1.4	2
112	Fabrication and optical properties of twoâ€dimensional photonic crystal of ZnO pillars. Crystal Research and Technology, 2010, 45, 393-397.	0.6	0