Jonghwan Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7142916/publications.pdf

Version: 2024-02-01

136885 102432 13,899 71 32 66 h-index citations g-index papers 75 75 75 23929 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447, 799-816.	13.7	4,709
2	Epigenetic memory in induced pluripotent stem cells. Nature, 2010, 467, 285-290.	13.7	2,011
3	An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells. Cell, 2008, 132, 1049-1061.	13.5	1,226
4	EZH1 Mediates Methylation on Histone H3 Lysine 27 and Complements EZH2 in Maintaining Stem Cell Identity and Executing Pluripotency. Molecular Cell, 2008, 32, 491-502.	4.5	838
5	FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Research, 2007, 17, 877-885.	2.4	830
6	A Myc Network Accounts for Similarities between Embryonic Stem and Cancer Cell Transcription Programs. Cell, 2010, 143, 313-324.	13.5	606
7	A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes and Development, 2009, 23, 837-848.	2.7	354
8	Epigenetic Regulation of Hematopoietic Differentiation by Gfi-1 and Gfi-1b Is Mediated by the Cofactors CoREST and LSD1. Molecular Cell, 2007, 27, 562-572.	4.5	340
9	DNA Methyltransferase 1 Is Essential for and Uniquely Regulates Hematopoietic Stem and Progenitor Cells. Cell Stem Cell, 2009, 5, 442-449.	5.2	318
10	Global Identification of Myc Target Genes Reveals Its Direct Role in Mitochondrial Biogenesis and Its E-Box Usage In Vivo. PLoS ONE, 2008, 3, e1798.	1.1	197
11	TIF1Î ³ Controls Erythroid Cell Fate by Regulating Transcription Elongation. Cell, 2010, 142, 133-143.	13.5	187
12	ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes and Development, 2013, 27, 683-698.	2.7	163
13	Serine/Threonine Kinase MLK4 Determines Mesenchymal Identity in Glioma Stem Cells in an NF-κB-dependent Manner. Cancer Cell, 2016, 29, 201-213.	7.7	147
14	Use of in vivo biotinylation to study protein–protein and protein–DNA interactions in mouse embryonic stem cells. Nature Protocols, 2009, 4, 506-517.	5.5	129
15	Embryonic stem cell-specific signatures in cancer: insights into genomic regulatory networks and implications for medicine. Genome Medicine, 2011, 3, 75.	3.6	112
16	Distinct and Combinatorial Functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in Mouse Embryonic Stem Cell Identity. Molecular Cell, 2014, 53, 32-48.	4.5	112
17	Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment. Nature Methods, 2005, 2, 47-53.	9.0	108
18	Global Transcriptional Profiling Reveals Distinct Functions of Thymic Stromal Subsets and Age-Related Changes during Thymic Involution. Cell Reports, 2014, 9, 402-415.	2.9	87

#	Article	IF	CITATIONS
19	The Transcriptional Network Controlling Pluripotency in ES Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 195-202.	2.0	84
20	PRC2 Is Required to Maintain Expression of the Maternal Gtl2-Rian-Mirg Locus by Preventing De Novo DNA Methylation in Mouse Embryonic Stem Cells. Cell Reports, 2015, 12, 1456-1470.	2.9	64
21	Splicing factor SRSF3 represses the translation of programmed cell death 4 mRNA by associating with the 5′-UTR region. Cell Death and Differentiation, 2014, 21, 481-490.	5.0	63
22	Yap1 is dispensable for selfâ€renewal but required for proper differentiation of mouse embryonic stem () Tj ETQc	0 <u>0 0</u> rgB1	7 / Oyerlock 10
23	Mapping the chromosomal targets of STAT1 by Sequence Tag Analysis of Genomic Enrichment (STAGE). Genome Research, 2007, 17, 910-916.	2.4	61
24	Global Role of TATA Box-Binding Protein Recruitment to Promoters in Mediating Gene Expression Profiles. Molecular and Cellular Biology, 2004, 24, 8104-8112.	1.1	57
25	Tumor penetrating peptides inhibiting MYC as a potent targeted therapeutic strategy for triple-negative breast cancers. Oncogene, 2019, 38, 140-150.	2.6	55
26	Surfactant Protein–C Chromatin-Bound Green Fluorescence Protein Reporter Mice Reveal Heterogeneity of Surfactant Protein C–Expressing Lung Cells. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 288-298.	1.4	54
27	Systematic Discovery of Endogenous Human Ribonucleoprotein Complexes. Cell Reports, 2019, 29, 1351-1368.e5.	2.9	53
28	Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis. BMC Genomics, 2017, 18, 538.	1.2	51
29	BMI1–UBR5 axis regulates transcriptional repression at damaged chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11243-11248.	3.3	46
30	Super-enhancer-guided mapping of regulatory networks controlling mouse trophoblast stem cells. Nature Communications, 2019, 10, 4749.	5.8	45
31	Arid3a is essential to execution of the first cell fate decision via direct embryonic and extraembryonic transcriptional regulation. Genes and Development, 2014, 28, 2219-2232.	2.7	44
32	miRNA-mediated TUSC3 deficiency enhances UPR and ERAD to promote metastatic potential of NSCLC. Nature Communications, 2018, 9, 5110.	5.8	38
33	Release of Notch activity coordinated by IL- $1\hat{1}^2$ signalling confers differentiation plasticity of airway progenitors via Fosl2 during alveolar regeneration. Nature Cell Biology, 2021, 23, 953-966.	4.6	37
34	Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation. Journal of Clinical Investigation, 2013, 123, 3292-3304.	3.9	37
35	TAF5L and TAF6L Maintain Self-Renewal of Embryonic Stem Cells via the MYC Regulatory Network. Molecular Cell, 2019, 74, 1148-1163.e7.	4.5	36
36	ZSCAN10 expression corrects the genomic instability of iPSCs from aged donors. Nature Cell Biology, 2017, 19, 1037-1048.	4.6	35

#	Article	IF	CITATIONS
37	Uhrf1 regulates active transcriptional marks at bivalent domains in pluripotent stem cells through Setd1a. Nature Communications, 2018, 9, 2583.	5.8	35
38	Mechanobiological conditioning of mesenchymal stem cells for enhanced vascular regeneration. Nature Biomedical Engineering, 2021, 5, 89-102.	11.6	35
39	Context-dependent roles of YAP/TAZ in stem cell fates and cancer. Cellular and Molecular Life Sciences, 2021, 78, 4201-4219.	2.4	35
40	Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation. ELife, 2018, 7, .	2.8	33
41	ARID3A is required for mammalian placenta development. Developmental Biology, 2017, 422, 83-91.	0.9	31
42	Transcription Elongation Factor <i>Tcea3</i> Regulates the Pluripotent Differentiation Potential of Mouse Embryonic Stem Cells Via the <i>Lefty1</i> Nodal-Smad2 Pathway. Stem Cells, 2013, 31, 282-292.	1.4	30
43	Role of ZBP-89 in human globin gene regulation and erythroid differentiation. Blood, 2011, 118, 3684-3693.	0.6	26
44	CpG island-mediated global gene regulatory modes in mouse embryonic stem cells. Nature Communications, 2014, 5, 5490.	5.8	26
45	Tgif1 Counterbalances the Activity of Core Pluripotency Factors in Mouse Embryonic Stem Cells. Cell Reports, 2015, 13, 52-60.	2.9	26
46	Mechanisms of transcription factor-mediated direct reprogramming of mouse embryonic stem cells to trophoblast stem-like cells. Nucleic Acids Research, 2017, 45, 10103-10114.	6.5	25
47	Induction of human trophoblast stem-like cells from primed pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115709119.	3.3	23
48	The Pluripotency Factor NANOG Binds to GLI Proteins and Represses Hedgehog-mediated Transcription. Journal of Biological Chemistry, 2016, 291, 7171-7182.	1.6	22
49	Sumoylation Regulates Interaction of FOG1 with C-terminal-binding Protein (CTBP)*. Journal of Biological Chemistry, 2010, 285, 28064-28075.	1.6	21
50	The oncogene AAMDC links PI3K-AKT-mTOR signaling with metabolic reprograming in estrogen receptor-positive breast cancer. Nature Communications, 2021, 12, 1920.	5.8	19
51	Fosl1 overexpression directly activates trophoblast-specific gene expression programs in embryonic stem cells. Stem Cell Research, 2018, 26, 95-102.	0.3	16
52	Implications of CpG islands on chromosomal architectures and modes of global gene regulation. Nucleic Acids Research, 2018, 46, 4382-4391.	6.5	12
53	Pathogen Infection and MORC Proteins Affect Chromatin Accessibility of Transposable Elements and Expression of Their Proximal Genes in Arabidopsis. Molecular Plant-Microbe Interactions, 2016, 29, 674-687.	1.4	11
54	Neutrophil DREAM promotes neutrophil recruitment in vascular inflammation. Journal of Experimental Medicine, 2022, 219, .	4.2	11

#	Article	IF	CITATIONS
55	Fbxl19 recruitment to CpG islands is required for Rnf20-mediated H2B mono-ubiquitination. Nucleic Acids Research, 2017, 45, 7151-7166.	6.5	10
56	The Response of the Prostate to Circulating Cholesterol: Activating Transcription Factor 3 (ATF3) as a Prominent Node in a Cholesterol-Sensing Network. PLoS ONE, 2012, 7, e39448.	1.1	9
57	Misexpression of genes lacking CpG islands drives degenerative changes during aging. Science Advances, 2021, 7, eabj9111.	4.7	8
58	Homeodomain Proteins Directly Regulate ATM Kinase Activity. Cell Reports, 2018, 24, 1471-1483.	2.9	7
59	\hat{l}^2 -catenin links cell seeding density to global gene expression during mouse embryonic stem cell differentiation. IScience, 2022, 25, 103541.	1.9	7
60	Multi-layered global gene regulation in mouse embryonic stem cells. Cellular and Molecular Life Sciences, 2015, 72, 199-216.	2.4	6
61	Integrating High-Throughput Approaches and in vitro Human Trophoblast Models to Decipher Mechanisms Underlying Early Human Placenta Development. Frontiers in Cell and Developmental Biology, 2021, 9, 673065.	1.8	6
62	An Immunofluorescence-Assisted Microfluidic Single Cell Quantitative Reverse Transcription Polymerase Chain Reaction Analysis of Tumour Cells Separated from Blood. Journal of Circulating Biomarkers, 2015, 4, 11.	0.8	4
63	Conserved dual-mode gene regulation programs in higher eukaryotes. Nucleic Acids Research, 2021, 49, 2583-2597.	6.5	2
64	Transcriptional Regulation of the First Cell Fate Decision. , 2017, 1, .		2
65	Systematic tracking of cell fate changes. Nature Biotechnology, 2010, 28, 146-147.	9.4	1
66	DNA Methyltransferase 1 Is Essential for and Uniquely Regulates Hematopoietic Stem and Progenitor Cells Blood, 2009, 114, 392-392.	0.6	1
67	Identifying Chromosomal Targets of DNAâ€Binding Proteins by Sequence Tag Analysis of Genomic Enrichment (STAGE). Current Protocols in Molecular Biology, 2005, 72, Unit 21.10.	2.9	O
68	Role of the Krul`ppel-Type Zinc Finger Transcription Factor ZBP-89 In Human Globin Gene Regulation and Erythroid Development. Blood, 2010, 116, 2067-2067.	0.6	0
69	Functionally Distinct Subsets of Monocytes in Mouse and Human Blood. Blood, 2019, 134, 438-438.	0.6	0
70	Rigidity of Cell Fate and Function Among Monocytes. Blood, 2021, 138, 2057-2057.	0.6	0
71	Neutrophil DREAM Promotes Neutrophil Recruitment in Vascular Inflammation Via Nuclear Factor Kappa B-Dependent and Independent Mechanisms. Blood, 2021, 138, 435-435.	0.6	0