Satheesh Babu Tg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7142650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Sensitive Voltammetric Immunosensing of Cancer Biomarkers HER2 and CA125 Using Gold Nanoparticles Anchored Reduced Graphene Oxide Enzyme-Free Nanolabel. Journal of the Electrochemical Society, 2022, 169, 037526.	1.3	5
2	Enhancement in mixing efficiency by ridges in straight and meander microchannels. Chemical Engineering and Processing: Process Intensification, 2021, 159, 108217.	1.8	5
3	Highly Sensitive and Wide Range Non-Enzymatic Electrochemical Detection of Cholesterol using Pencil Lead Electrodes. Journal of the Electrochemical Society, 2021, 168, 047515.	1.3	12
4	Complete fabrication of a nonenzymatic glucose sensor with a wide linear range for the direct testing of blood samples. Electrochimica Acta, 2021, 395, 139145.	2.6	8
5	Screen-printed carbon electrode for the electrochemical detection of conjugated bilirubin. Materials Letters, 2021, 304, 130574.	1.3	8
6	Gold nanoparticle decorated reduced graphene oxide for the nonenzymatic electrochemical sensing of glucose in neutral medium. Materials Today: Proceedings, 2020, 33, 2414-2420.	0.9	4
7	Aggregation induced, formaldehyde tailored nanowire like networks of Cu and their SERS activity. Chemical Physics Letters, 2020, 748, 137390.	1.2	8
8	Fabrication of Silver Peroxide– Zinc Rechargeable Battery. Materials Today: Proceedings, 2020, 24, 949-959.	0.9	5
9	Urchin-like fibrous red phosphorus as an efficient photocatalyst for solar-light-driven disinfection of E. coli. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384, 112034.	2.0	20
10	Sophorolipid induced hydrothermal synthesis of Cu nanowires and its modulating effect on Cu nanostructures. Nano Structures Nano Objects, 2019, 18, 100285.	1.9	10
11	Design and fabrication of a three layered microfluidic device for lab on a chip applications. Materials Today: Proceedings, 2018, 5, 16286-16292.	0.9	0
12	Fabrication of a Configurable Multi-Potentiostat for LOC Applications. Materials Today: Proceedings, 2018, 5, 16732-16739.	0.9	2
13	Design, Simulation and Fabrication of a Normally-Closed Microvalve based on Magnetic Actuation. Materials Today: Proceedings, 2018, 5, 16059-16064.	0.9	4
14	Electrochemical synthesis of graphene and its application in electrochemical sensing of glucose. Materials Today: Proceedings, 2018, 5, 16487-16493.	0.9	7
15	Automated and programmable electromagnetically actuated valves for microfluidic applications. Sensors and Actuators A: Physical, 2018, 283, 79-86.	2.0	9
16	Fabrication of Paper Microfluidics POCT Device for the Colorimetric Assay of Alkaline Phosphatase. , 2018, , .		0
17	Fabrication of a disposable non-enzymatic electrochemical creatinine sensor. Sensors and Actuators B: Chemical, 2017, 243, 589-595.	4.0	82
18	Voltammetric determination of ascorbic acid by using a disposable screen printed electrode modified with Cu(OH)2 nanorods. Mikrochimica Acta, 2017, 184, 3573-3579.	2.5	27

SATHEESH BABU TG

#	Article	IF	CITATIONS
19	Computational simulation and fabrication of smooth edged passive micromixers with alternately varying diameter for efficient mixing. Microelectronic Engineering, 2016, 165, 32-40.	1.1	14
20	Au nanoparticles decorated reduced graphene oxide for the fabrication of disposable nonenzymatic hydrogen peroxide sensor. Journal of Electroanalytical Chemistry, 2016, 764, 64-70.	1.9	44
21	Single step synthesis of Au–CuO nanoparticles decorated reduced graphene oxide for high performance disposable nonenzymatic glucose sensor. Journal of Electroanalytical Chemistry, 2015, 743, 1-9.	1.9	65
22	Highly sensitive and wide-range nonenzymatic disposable glucose sensor based on a screen printed carbon electrode modified with reduced graphene oxide and Pd-CuO nanoparticles. Mikrochimica Acta, 2015, 182, 2183-2192.	2.5	54
23	Co–Cu alloy nanoparticles decorated TiO2 nanotube arrays for highly sensitive and selective nonenzymatic sensing of glucose. Sensors and Actuators B: Chemical, 2015, 215, 337-344.	4.0	56
24	Pt-CuO nanoparticles decorated reduced graphene oxide for the fabrication of highly sensitive non-enzymatic disposable glucose sensor. Sensors and Actuators B: Chemical, 2014, 195, 197-205.	4.0	128
25	Electrodeposition of aluminium and aluminium-copper alloys from a room temperature ionic liquid electrolyte containing aluminium chloride and triethylamine hydrochloride. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 909-916.	2.4	16
26	Tantalum oxide honeycomb architectures for the development of a non-enzymatic glucose sensor with wide detection range. Biosensors and Bioelectronics, 2013, 50, 472-477.	5.3	27
27	Gold nanoparticle–polypyrrole composite modified TiO2 nanotube array electrode for the amperometric sensing of ascorbic acid. Journal of Applied Electrochemistry, 2012, 42, 427-434.	1.5	27
28	Single step modification of copper electrode for the highly sensitive and selective non-enzymatic determination of glucose. Mikrochimica Acta, 2010, 169, 49-55.	2.5	58
29	Development of highly sensitive non-enzymatic sensor for the selective determination of glucose and fabrication of a working model. Electrochimica Acta, 2010, 55, 1612-1618.	2.6	84
30	Cold Nanoparticles Modified Titania Nanotube Arrays for Amperometric Determination of Ascorbic Acid. Analytical Letters, 2010, 43, 2809-2822.	1.0	17