List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7142624/publications.pdf Version: 2024-02-01

127 papers	6,647 citations	57631 44 h-index	66788 78 g-index
133	133	133	6497
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Solution processable small molecules for organic light-emitting diodes. Journal of Materials Chemistry, 2010, 20, 6392.	6.7	555
2	Strategies to Design Bipolar Small Molecules for OLEDs: Donorâ€Acceptor Structure and Nonâ€Donorâ€Acceptor Structure. Advanced Materials, 2011, 23, 1137-1144.	11.1	399
3	Toward Highly Efficient Solidâ€State White Lightâ€Emitting Electrochemical Cells: Blueâ€Green to Red Emitting Cationic Iridium Complexes with Imidazoleâ€Type Ancillary Ligands. Advanced Functional Materials, 2009, 19, 2950-2960.	7.8	298
4	Highly Efficient Thermally Activated Delayed Fluorescence via Jâ€Aggregates with Strong Intermolecular Charge Transfer. Advanced Materials, 2019, 31, e1808242.	11.1	278
5	Blueâ€Emitting Cationic Iridium Complexes with 2â€{1 <i>H</i> â€Pyrazolâ€1â€yl)pyridine as the Ancillary Ligand for Efficient Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2008, 18, 2123-2131.	7.8	276
6	Ionâ€Migration Inhibition by the Cation–í€ Interaction in Perovskite Materials for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2018, 30, e1707583.	11.1	248
7	Stable α/δ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission. Chemical Science, 2017, 8, 800-805.	3.7	199
8	Highly Efficient Blue-Green and White Light-Emitting Electrochemical Cells Based on a Cationic Iridium Complex with a Bulky Side Group. Chemistry of Materials, 2010, 22, 3535-3542.	3.2	166
9	Molecular Understanding of the Chemical Stability of Organic Materials for OLEDs: A Comparative Study on Sulfonyl, Phosphine-Oxide, and Carbonyl-Containing Host Materials. Journal of Physical Chemistry C, 2014, 118, 7569-7578.	1.5	142
10	Sterically Wrapped Multiple Resonance Fluorophors for Suppression of Concentration Quenching and Spectrum Broadening. Angewandte Chemie - International Edition, 2022, 61, .	7.2	140
11	Homoleptic Facial Ir(III) Complexes via Facile Synthesis for High-Efficiency and Low-Roll-Off Near-Infrared Organic Light-Emitting Diodes over 750 nm. Chemistry of Materials, 2017, 29, 4775-4782.	3.2	138
12	High-triplet-energy tri-carbazole derivatives as host materials for efficient solution-processed blue phosphorescent devices. Journal of Materials Chemistry, 2011, 21, 4918.	6.7	122
13	Towards High Efficiency and Low Rollâ€Off Orange Electrophosphorescent Devices by Fine Tuning Singlet and Triplet Energies of Bipolar Hosts Based on Indolocarbazole/1, 3, 5â€Triazine Hybrids. Advanced Functional Materials, 2014, 24, 3551-3561.	7.8	117
14	Ultrahighâ€Efficiency Green PHOLEDs with a Voltage under 3 V and a Power Efficiency of Nearly 110 lm W ^{â~'1} at Luminance of 10 000 cd m ^{â~'2} . Advanced Materials, 2017, 29, 1702847.	11.1	112
15	Tuning of Charge Balance in Bipolar Host Materials for Highly Efficient Solution-Processed Phosphorescent Devices. Organic Letters, 2011, 13, 3146-3149.	2.4	102
16	Enhanced stability of blue-green light-emitting electrochemical cells based on a cationic iridium complex with 2-(1-phenyl-1H-pyrazol-3-yl)pyridine as the ancillary ligand. Chemical Communications, 2011, 47, 6467.	2.2	98
17	A Pyridineâ€Containing Anthracene Derivative with High Electron and Hole Mobilities for Highly Efficient and Stable Fluorescent Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2011, 21, 1881-1886.	7.8	93
18	Near-Infrared-Emitting Iridium(III) Complexes as Phosphorescent Dyes for Live Cell Imaging. Organometallics, 2014, 33, 61-68.	1.1	93

#	Article	IF	CITATIONS
19	Efficient Near-Infrared-Emitting Cationic Iridium Complexes as Dopants for OLEDs with Small Efficiency Roll-off. Journal of Physical Chemistry C, 2012, 116, 11658-11664.	1.5	89
20	High-efficiency and low efficiency roll-off near-infrared fluorescent OLEDs through triplet fusion. Chemical Science, 2016, 7, 2888-2895.	3.7	88
21	High-efficiency near-infrared organic light-emitting devices based on an iridium complex with negligible efficiency roll-off. Journal of Materials Chemistry C, 2013, 1, 6446.	2.7	87
22	Extremely low driving voltage electrophosphorescent green organic light-emitting diodes based on a host material with small singlet–triplet exchange energy without p- or n-doping layer. Organic Electronics, 2013, 14, 260-266.	1.4	85
23	Efficient single layer solution-processed blue-emitting electrophosphorescent devices based on a small-molecule host. Applied Physics Letters, 2008, 92, 263301.	1.5	79
24	Achilles Heels of Phosphine Oxide Materials for OLEDs: Chemical Stability and Degradation Mechanism of a Bipolar Phosphine Oxide/Carbazole Hybrid Host Material. Journal of Physical Chemistry C, 2012, 116, 19451-19457.	1.5	79
25	High-efficiency orange to near-infrared emissions from bis-cyclometalated iridium complexes with phenyl-benzoquinoline isomers as ligands. Journal of Materials Chemistry, 2009, 19, 6573.	6.7	76
26	Highly efficient solution-processed blue-green to red and white light-emitting diodes using cationic iridium complexes as dopants. Organic Electronics, 2010, 11, 1185-1191.	1.4	76
27	Novel star-shaped host materials for highly efficient solution-processed phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2010, 20, 6131.	6.7	71
28	Efficient solution-processed small-molecule single emitting layer electrophosphorescent white light-emitting diodes. Organic Electronics, 2010, 11, 1344-1350.	1.4	70
29	Impacts of Sn precursors on solution-processed amorphous zinc–tin oxide films and their transistors. RSC Advances, 2012, 2, 5307.	1.7	66
30	Synthesis, Characterization, and Photophysical and Electroluminescent Properties of Blue-Emitting Cationic Iridium(III) Complexes Bearing Nonconjugated Ligands. Inorganic Chemistry, 2014, 53, 6596-6606.	1.9	66
31	Synthesis, Crystal Structure, and Luminescent Properties of a Binuclear Gallium Complex with Mixed Ligands. Inorganic Chemistry, 2004, 43, 5096-5102.	1.9	65
32	Control of Intramolecular ï€â€"ï€ Stacking Interaction in Cationic Iridium Complexes via Fluorination of Pendant Phenyl Rings. Inorganic Chemistry, 2012, 51, 4502-4510.	1.9	63
33	Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam - scanning electron microscopy. Journal of Power Sources, 2017, 365, 235-239.	4.0	63
34	Novel Naphtho[2,3-c][1,2,5]thiadiazole Derivative for Non-doped Small Molecular Organic Red-Light-Emitting Diodes. Advanced Materials, 2006, 18, 1607-1611.	11.1	59
35	Efficient solution-processed electrophosphorescent devices using ionic iridium complexes as the dopants. Organic Electronics, 2009, 10, 152-157.	1.4	59
36	Star-shaped dendritic hosts based on carbazole moieties for highly efficient blue phosphorescent OLEDs. Journal of Materials Chemistry, 2012, 22, 12016.	6.7	56

#	Article	IF	CITATIONS
37	Photoluminescence Lifetime Imaging of Synthesized Proteins in Living Cells Using an Iridium–Alkyne Probe. Angewandte Chemie - International Edition, 2017, 56, 14928-14932.	7.2	56
38	Novel fluorene/carbazole hybrids with steric bulk as host materials for blue organic electrophosphorescent devices. Tetrahedron, 2007, 63, 10161-10168.	1.0	55
39	Morphology-controlled CH ₃ NH ₃ PbI ₃ films by hexane-assisted one-step solution deposition for hybrid perovskite mesoscopic solar cells with high reproductivity. Journal of Materials Chemistry A, 2015, 3, 22839-22845.	5.2	55
40	Near-infrared-II thermally activated delayed fluorescence organic light-emitting diodes. Chemical Communications, 2020, 56, 8988-8991.	2.2	54
41	Limitations and Perspectives on Tripletâ€Materialâ€Based Organic Photovoltaic Devices. Advanced Materials, 2019, 31, e1900690.	11.1	50
42	Highâ€Efficiency Nearâ€Infrared Fluorescent Organic Lightâ€Emitting Diodes with Small Efficiency Rollâ€Off: A Combined Design from Emitters to Devices. Advanced Functional Materials, 2017, 27, 1703283.	7.8	48
43	A Comparison Study of the Organic Small Molecular Thin Films Prepared by Solution Process and Vacuum Deposition: Roughness, Hydrophilicity, Absorption, Photoluminescence, Density, Mobility, and Electroluminescence. Journal of Physical Chemistry C, 2011, 115, 14278-14284.	1.5	47
44	Solution-processed blue–green organic light-emitting diodes based on cationic iridium complexes with 1-pyridyl-3-methylimidazolin-2-ylidene-C,C2′ as the ancillary ligand. Organic Electronics, 2012, 13, 1277-1288.	1.4	46
45	Efficient near-infrared-emitting cationic iridium complexes based on highly conjugated cyclometalated benzo[g]phthalazine derivatives. RSC Advances, 2015, 5, 42354-42361.	1.7	46
46	The removal of estrogenic activity with UV/chlorine technology and identification of novel estrogenic disinfection by-products. Journal of Hazardous Materials, 2016, 307, 119-126.	6.5	43
47	A new type of light-emitting naphtho[2,3-c][1,2,5]thiadiazole derivatives: synthesis, photophysical characterization and transporting properties. Journal of Materials Chemistry, 2008, 18, 806.	6.7	41
48	Pure red electroluminescence from a host material of binuclear gallium complex. Applied Physics Letters, 2002, 81, 4913-4915.	1.5	40
49	Enabling the sunlight driven response of thermally induced shape memory polymers by rewritable CH ₃ NH ₃ PbI ₃ perovskite coating. Journal of Materials Chemistry A, 2017, 5, 7285-7290.	5.2	39
50	An azomethin-zinc complex for organic electroluminescence: Crystal structure, thermal stability and optoelectronic properties. Inorganica Chimica Acta, 2005, 358, 4451-4458.	1.2	38
51	Substituted azomethine–zinc complexes: Thermal stability, photophysical, electrochemical and electron transport properties. Inorganica Chimica Acta, 2009, 362, 2327-2333.	1.2	38
52	An 850 nm pure near-infrared emitting iridium complex for solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 8484-8492.	2.7	38
53	Photostability and morphological stability of hole transporting materials used in organic electroluminescence. Thin Solid Films, 2000, 372, 265-270.	0.8	37
54	Near-infrared emitting iridium complexes: Molecular design, photophysical properties, and related applications. IScience, 2021, 24, 102858.	1.9	37

#	Article	IF	CITATIONS
55	Strongly luminescent binuclear aluminium chelate with polymer-like molecular packing and solution-processibility. Chemical Communications, 2005, , 4560.	2.2	36
56	Effects of <i>ortho</i> -Linkages on the Molecular Stability of Organic Light-Emitting Diode Materials. Chemistry of Materials, 2018, 30, 8771-8781.	3.2	36
57	High-Performance Transistors Based on Zinc Tin Oxides by Single Spin-Coating Process. Langmuir, 2013, 29, 151-157.	1.6	32
58	Sterically Wrapped Multiple Resonance Fluorophors for Suppression of Concentration Quenching and Spectrum Broadening. Angewandte Chemie, 2022, 134, .	1.6	32
59	White light emission from an exciplex based on a phosphine oxide type electron transport compound in a bilayer device structure. RSC Advances, 2013, 3, 21453.	1.7	29
60	Rational Design of Chelated Aluminum Complexes toward Highly Efficient and Thermally Stable Electron-Transporting Materials. Chemistry of Materials, 2014, 26, 3693-3700.	3.2	28
61	π–π stacking: a strategy to improve the electron mobilities of bipolar hosts for TADF and phosphorescent devices with low efficiency roll-off. Journal of Materials Chemistry C, 2017, 5, 3372-3381.	2.7	28
62	Cu-Catalyzed π-Core Evolution of Benzoxadiazoles with Diaryliodonium Salts for Regioselective Synthesis of Phenazine Scaffolds. Organic Letters, 2018, 20, 4458-4461.	2.4	28
63	The intramolecular π–π stacking interaction does not always work for improving the stabilities of light-emitting electrochemical cells. Organic Electronics, 2012, 13, 2442-2449.	1.4	27
64	Relationship between Mobilities from Time-of-Flight and Dark-Injection Space-Charge-Limited Current Measurements for Organic Semiconductors: A Monte Carlo Study. Journal of Physical Chemistry C, 2014, 118, 6052-6058.	1.5	26
65	Intermolecular charge-transfer aggregates enable high-efficiency near-infrared emissions by nonadiabatic coupling suppression. Science China Chemistry, 2021, 64, 1786-1795.	4.2	25
66	Novel carbazole/pyridine-based host material for solution-processed blue phosphorescent organic light-emitting devices. Dyes and Pigments, 2012, 92, 891-896.	2.0	24
67	An iridium complex-based probe for photoluminescence lifetime imaging of human carboxylesterase 2 in living cells. Chemical Communications, 2018, 54, 9027-9030.	2.2	24
68	Stable blue-green light-emitting electrochemical cells based on a cationic iridium complex with phenylpyrazole as the cyclometalated ligands. Organic Electronics, 2012, 13, 1948-1955.	1.4	23
69	Photopatterning Freestanding Chiral Nematic Mesoporous Organosilica Films. Advanced Functional Materials, 2017, 27, 1703346.	7.8	23
70	An Ambipolar Transporting Naphtho[2,3-c][1,2,5]thiadiazole Derivative with High Electron and Hole Mobilities. Organic Letters, 2009, 11, 2069-2072.	2.4	22
71	Efficient blue-green and white organic light-emitting diodes withÂaÂsmall-molecule host and cationic iridium complexes asÂdopants. Applied Physics A: Materials Science and Processing, 2010, 100, 1035-1040.	1.1	21
72	Synthesis, Structures, and Optical Properties of Cadmium Iodide/Phenethylamine Hybrid Materials with Controlled Structures and Emissions. Inorganic Chemistry, 2007, 46, 10252-10260.	1.9	20

#	Article	IF	CITATIONS
73	Efficient solution-processed phosphor-sensitized single-emitting-layer white organic light-emitting devices: fabrication, characteristics, and transient analysis of energy transfer. Journal of Materials Chemistry, 2011, 21, 5312.	6.7	20
74	Small molecular phosphorescent organic light-emitting diodes using a spin-coated hole blocking layer. Applied Physics Letters, 2012, 100, .	1.5	19
75	Organic cesium salt as an efficient electron injection material for organic light-emitting diodes. Applied Physics Letters, 2008, 93, 183302.	1.5	18
76	Low-Temperature Evaporable Re ₂ O ₇ : An Efficient p-Dopant for OLEDs. Journal of Physical Chemistry C, 2013, 117, 13763-13769.	1.5	18
77	Effects of ozonation on the activity of endotoxin and its inhalation toxicity in reclaimed water. Water Research, 2019, 154, 153-161.	5.3	18
78	Morphological characterization of pentacene single crystals grown by physical vapor transport. Applied Surface Science, 2007, 253, 3581-3585.	3.1	16
79	Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode. Journal Physics D: Applied Physics, 2009, 42, 075103.	1.3	16
80	Ambipolar Transporting 1,2â€Benzanthracene Derivative with Efficient Green Excimer Emission for Singleâ€Layer Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2013, 1, 167-172.	3.6	16
81	Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination. Journal of Hazardous Materials, 2016, 303, 131-136.	6.5	16
82	Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries. Polymers, 2017, 9, 657.	2.0	16
83	Effects of chlorination and combined UV/Cl2 treatment on endotoxin activity and inhalation toxicity of lipopolysaccharide, gram-negative bacteria and reclaimed water. Water Research, 2019, 155, 124-130.	5.3	16
84	Efficient single-active-layer organic light-emitting diodes with fluoropolymer buffer layers. Applied Physics Letters, 2006, 88, 131113.	1.5	15
85	Systematic Investigation of Surface Modification by Organosiloxane Self-Assembled on Indium–Tin Oxide for Improved Hole Injection in Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2014, 6, 4570-4577.	4.0	15
86	Synthesis of carbazole-based dendrimer: host material for highly efficient solution-processed blue organic electrophosphorescent diodes. Tetrahedron, 2012, 68, 5800-5805.	1.0	13
87	Efficient doped red light-emitting electrochemical cells based on cationic iridium complexes. Synthetic Metals, 2013, 163, 33-37.	2.1	13
88	Electrophosphorescent devices based on cationic iridium complexes: The effect of fluorinating the pendant phenyl ring of the ancillary ligand on the device performances. Synthetic Metals, 2013, 166, 52-56.	2.1	13
89	UV photoconversion of environmental oestrogen diethylstilbestrol and its persistence in surface water under sunlight. Water Research, 2017, 127, 77-85.	5.3	13
90	Dependence of the performance of the organic electroluminescent devices upon the deposition rate of organic thin films. Synthetic Metals, 2000, 110, 241-243.	2.1	12

#	Article	IF	CITATIONS
91	Experimental and theoretical study of the charge transport property of 4,4′-N,N′-dicarbazole-biphenyl. Science China Chemistry, 2012, 55, 2428-2432.	4.2	12
92	Study on the Electron Injection Mechanism of Thermally Decomposable Cs ₂ CO ₃ . Japanese Journal of Applied Physics, 2009, 48, 102302.	0.8	11
93	Investigation on voltage loss in organic triplet photovoltaic devices based on Ir complexes. Journal of Materials Chemistry C, 2019, 7, 15049-15056.	2.7	11
94	Dynamic Monitoring of Phase-Separated Biomolecular Condensates by Photoluminescence Lifetime Imaging. Analytical Chemistry, 2021, 93, 2988-2995.	3.2	11
95	Nanocomposite Thin Film Based on Ytterbium Fluoride and <i>N,N′</i> -Bis(1-naphthyl)- <i>N,N′</i> -diphenyl-1,1′-biphenyl-4,4′-diamine and Its Application in Orga Light Emitting Diodes as Hole Transport Layer. Journal of Physical Chemistry C, 2008, 112, 11985-11990.	n ic 5	10
96	Formation, confirmation and application of Li : Al alloy as an electron injection layer with Li ₃ N as the precursor. Journal Physics D: Applied Physics, 2010, 43, 252001.	1.3	10
97	Positional Disorder-Induced Mobility Enhancement in Rapidly Cooled Organic Semiconductor Melts. Journal of Physical Chemistry C, 2010, 114, 9056-9061.	1.5	10
98	Modulated intermolecular electrostatic interaction and morphology transition in squarylium dyes based organic field-effect transistors. Organic Electronics, 2011, 12, 1674-1682.	1.4	10
99	Photoluminescence Lifetime Imaging of Synthesized Proteins in Living Cells Using an Iridium–Alkyne Probe. Angewandte Chemie, 2017, 129, 15124-15128.	1.6	10
100	Negative Charge Management to Make Fragile Bonds Less Fragile toward Electrons for Robust Organic Optoelectronic Materials. CCS Chemistry, 2022, 4, 331-343.	4.6	10
101	Investigation of a binuclear gallium complex with bipolar charge transporting capability for organic light-emitting diodes. Journal of Chemical Physics, 2006, 124, 024719.	1.2	9
102	Performance enhancement of organic light-emitting diodes by chlorinated indium tin oxide in the presence of hydrogen peroxide. Organic Electronics, 2013, 14, 882-887.	1.4	9
103	Liquid-Formed Glassy Film of <i>N</i> , <i>N</i> ,≤i>N, Transporting Ability, Photoluminescence, and Stability. Journal of Physical Chemistry C, 2007, 111, 18376-18380.	1.5	8
104	One Order of Magnitude Enhancement of Electron Mobility by Rapid Cooling the Melt of an n-Type Organic Semiconductor. Journal of Physical Chemistry C, 2009, 113, 16549-16552.	1.5	8
105	Improved performance of pure formamidinium lead iodide perovskite light-emitting diodes by moisture treatment. Journal of Materials Chemistry C, 2017, 5, 11121-11127.	2.7	8
106	Perinatal outcomes and offspring growth profiles in twin pregnancies complicated by gestational diabetes mellitus: A longitudinal cohort study. Diabetes Research and Clinical Practice, 2021, 171, 108623.	1.1	8
107	Metal Halide/Nâ€Đonor Organic Ligand Hybrid Materials with Confined Energy Gaps and Emissions. European Journal of Inorganic Chemistry, 2008, 2008, 3040-3045.	1.0	5
108	Investigation of an efficient YbF3/Al cathode for tris-(8-hydroxyquinoline)aluminum-based small molecular organic light-emitting diodes. Applied Surface Science, 2008, 254, 7223-7226.	3.1	5

#	Article	IF	CITATIONS
109	Novel Cs2CO3:Ag/Ag Cathode for High-Efficiency Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2009, 48, 020206.	0.8	5
110	Indolium Squarine Semiconductor for Field-Effect Transistors. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2011, 27, 1893-1899.	2.2	4
111	A novel 1,5-naphthylenediamine derivative as potential organic blue light-emitting material. Synthetic Metals, 2002, 129, 25-28.	2.1	3
112	Novel triplet host materials with high energy gap and thermal stability for organic electrophosphorescent devices. , 2006, , .		3
113	A binuclear aluminum(III) complex: Thermal stability, photophysical, electrochemical and electroluminescent properties. Synthetic Metals, 2007, 157, 713-718.	2.1	3
114	Transparent organic light-emitting diodes based on Cs2CO3:Ag/Ag composite cathode. Science Bulletin, 2010, 55, 1479-1482.	1.7	3
115	Preparation and properties of solution-processed zinc tin oxide films from a new organic precursor. Science China Chemistry, 2011, 54, 651-655.	4.2	3
116	Bipolar charge transport property of N,N′-dicarbazolyl-1,4-dimethene-benzene: A study of the short range order model. Science Bulletin, 2013, 58, 79-83.	1.7	3
117	Investigation of Novel Efficient Electron Injection Lithium Complex Containing Quinoxaline Moiety for Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2006, 45, L1253-L1255.	0.8	2
118	AMBIPOLAR CHARGE TRANSPORT: Strategies to Design Bipolar Small Molecules for OLEDs: Donor-Acceptor Structure and Non-Donor-Acceptor Structure (Adv. Mater. 9/2011). Advanced Materials, 2011, 23, 1136-1136.	11.1	1
119	Crystal structure of diiodido-bis(phenanthridine-κN)cadmium(II), CdI2(C13H9N)2, C26H18CdI2N2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2013, 228, 403-404.	0.1	1
120	Preparation and Properties of Zinc Oxide Films by Spin-Coating Water Solution Precursor. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2010, 26, 2049-2052.	2.2	1
121	P-74: Full Color PM OLED with Novel Small Molecule Materials. Digest of Technical Papers SID International Symposium, 2003, 34, 502.	0.1	0
122	45.4: Dimers of Organic Metal Complexes Based on Tridentate Schiff-Base Ligand for Organic Electroluminescence. Digest of Technical Papers SID International Symposium, 2003, 34, 1298.	0.1	0
123	Red Doped Organic Light-Emitting Diodes with Teflon Buffer Layer. Japanese Journal of Applied Physics, 2005, 44, 7925-7927.	0.8	0
124	Crystal structure of 1,8-bis[4-(4-pentylcyclohexyl)phenyl]-10- methoxyanthracene, C49H60O. Zeitschrift Fur Kristallographie - New Crystal Structures, 2009, 224, 512-514.	0.1	0
125	Preparation and Field-Effect Property of Solution-Processed Multilayer Zinc Oxide. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2010, 26, 249-252.	2.2	0
126	Non-doped Single-Layer Red-Emitting Electrofluorescent Devices Based on an Ambipolar Small Molecule. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2010, 26, 531-534.	2.2	0

#	Article	IF	CITATIONS
127	Thermally activated delayed fluorescent materials for other applications. , 2022, , 427-447.		0