List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7142103/publications.pdf Version: 2024-02-01

ΚΛΤΥΛ ΡΛΙΙΟ

#	Article	IF	CITATIONS
1	The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. Journal of Clinical Investigation, 2006, 116, 1913-1923.	8.2	316
2	Deletion of Cavin/PTRF Causes Global Loss of Caveolae, Dyslipidemia, and Glucose Intolerance. Cell Metabolism, 2008, 8, 310-317.	16.2	313
3	Roads to polyploidy: The megakaryocyte example. Journal of Cellular Physiology, 2002, 190, 7-20.	4.1	227
4	Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood, 2014, 124, 791-802.	1.4	209
5	The Reno-Vascular A2B Adenosine Receptor Protects the Kidney from Ischemia. PLoS Medicine, 2008, 5, e137.	8.4	187
6	Polyploidy. Experimental Hematology, 2000, 28, 3-16.	0.4	162
7	Mechanism of Aurora-B Degradation and Its Dependency on Intact KEN and A-Boxes: Identification of an Aneuploidy-Promoting Property. Molecular and Cellular Biology, 2005, 25, 4977-4992.	2.3	146
8	Animal models for the study of adenosine receptor function. Journal of Cellular Physiology, 2005, 202, 9-20.	4.1	142
9	A2B Adenosine Receptor Promotes Mesenchymal Stem Cell Differentiation to Osteoblasts and Bone Formation in Vivo. Journal of Biological Chemistry, 2012, 287, 15718-15727.	3.4	141
10	TLR stimulation initiates a CD39-based autoregulatory mechanism that limits macrophage inflammatory responses. Blood, 2013, 122, 1935-1945.	1.4	122
11	JAK2-Mediated Clonal Hematopoiesis Accelerates Pathological Remodeling in Murine HeartÂFailure. JACC Basic To Translational Science, 2019, 4, 684-697.	4.1	114
12	Links Between Insulin Resistance, Adenosine A2B Receptors, and Inflammatory Markers in Mice and Humans. Diabetes, 2011, 60, 669-679.	0.6	104
13	A2B Adenosine Receptor Gene Deletion Attenuates Murine Colitis. Gastroenterology, 2008, 135, 861-870.	1.3	103
14	The Cell Cycle in Polyploid Megakaryocytes Is Associated with Reduced Activity of Cyclin B1-dependent Cdc2 Kinase. Journal of Biological Chemistry, 1996, 271, 4266-4272.	3.4	100
15	The A2b adenosine receptor protects against vascular injury. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 792-796.	7.1	99
16	Equilibrative nucleoside transporter 1 (ENT1) regulates postischemic blood flow during acute kidney injury in mice. Journal of Clinical Investigation, 2012, 122, 693-710.	8.2	99
17	Deregulated Auroraâ€B induced tetraploidy promotes tumorigenesis. FASEB Journal, 2009, 23, 2741-2748.	0.5	97
18	The A2b Adenosine Receptor Modulates Glucose Homeostasis and Obesity. PLoS ONE, 2012, 7, e40584.	2.5	97

#	Article	IF	CITATIONS
19	Crosstalk between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury. FASEB Journal, 2013, 27, 3078-3089.	0.5	95
20	BclxL overexpression in megakaryocytes leads to impaired platelet fragmentation. Blood, 2002, 100, 1670-1678.	1.4	87
21	A _{2b} Adenosine Receptor Regulates Hyperlipidemia and Atherosclerosis. Circulation, 2012, 125, 354-363.	1.6	80
22	AML1/RUNX1 Increases During G1 to S Cell Cycle Progression Independent of Cytokine-dependent Phosphorylation and Induces Cyclin D3 Gene Expression. Journal of Biological Chemistry, 2004, 279, 15678-15687.	3.4	79
23	Adenosine and blood platelets. Purinergic Signalling, 2011, 7, 357-365.	2.2	78
24	Control of Megakaryocyte Expansion and Bone Marrow Fibrosis by Lysyl Oxidase. Journal of Biological Chemistry, 2011, 286, 27630-27638.	3.4	78
25	Uremic Solute-Aryl Hydrocarbon Receptor-Tissue Factor Axis Associates with Thrombosis after Vascular Injury in Humans. Journal of the American Society of Nephrology: JASN, 2018, 29, 1063-1072.	6.1	76
26	Lysyl Oxidase Oxidizes Cell Membrane Proteins and Enhances the Chemotactic Response of Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2008, 283, 24103-24117.	3.4	75
27	A role for the A3 adenosine receptor in determining tissue levels of cAMP and blood pressure: studies in knock-out mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1500, 280-290.	3.8	73
28	Adenosine signaling promotes hematopoietic stem and progenitor cell emergence. Journal of Experimental Medicine, 2015, 212, 649-663.	8.5	73
29	Mechanisms of induction of adenosine receptor genes and its functional significance. Journal of Cellular Physiology, 2009, 218, 35-44.	4.1	72
30	Ubiquitin-dependent Degradation of Cyclin B Is Accelerated in Polyploid Megakaryocytes. Journal of Biological Chemistry, 1998, 273, 1387-1392.	3.4	71
31	Aberrant quantity and localization of Aurora-B/AIM-1 and survivin during megakaryocyte polyploidization and the consequences of Aurora-B/AIM-1–deregulated expression. Blood, 2004, 103, 3717-3726.	1.4	69
32	Upregulation of Nox4 in the aging vasculature and its association with smooth muscle cell polyploidy. Cell Cycle, 2009, 8, 902-908.	2.6	62
33	Megakaryocyte pathology and bone marrow fibrosis: the lysyl oxidase connection. Blood, 2012, 120, 1774-1781.	1.4	61
34	Characterization of the Mouse Cyclin D3 Gene: Exon/Intron Organization and Promoter Activity. Genomics, 1996, 35, 156-163.	2.9	59
35	Increased polyploidy in aortic vascular smooth muscle cells during aging is marked by cellular senescence. Aging Cell, 2007, 6, 257-260.	6.7	59
36	Adenosine, Adenosine Receptors and Their Role in Glucose Homeostasis and Lipid Metabolism. Journal of Cellular Physiology, 2013, 228, 1703-1712.	4.1	59

#	Article	IF	CITATIONS
37	Fundamental differences in endoreplication in mammals and <i>Drosophila</i> revealed by analysis of endocycling and endomitotic cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9368-9373.	7.1	57
38	Tetraploidy/aneuploidy and stem cells in cancer promotion: The role of chromosome passenger proteins. Journal of Cellular Physiology, 2006, 208, 12-22.	4.1	56
39	Reduced glutathione prevents nitric oxide-induced apoptosis in vascular smooth muscle cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1359, 143-152.	4.1	55
40	An A3-Subtype Adenosine Receptor Is Highly Expressed in Rat Vascular Smooth Muscle Cells: Its Role in Attenuating Adenosine-Induced Increase in cAMP. Microvascular Research, 1997, 54, 243-252.	2.5	54
41	Inositide-Dependent Phospholipase C Signaling Mimics Insulin in Skeletal Muscle Differentiation by Affecting Specific Regions of the Cyclin D3 Promoter. Endocrinology, 2007, 148, 1108-1117.	2.8	53
42	Vascular Smooth Muscle Polyploidization as a Biomarker for Aging and Its Impact on Differential Gene Expression. Journal of Biological Chemistry, 2004, 279, 5306-5313.	3.4	52
43	Mast Cell Adenosine Receptors Function: A Focus on the A3 Adenosine Receptor and Inflammation. Frontiers in Immunology, 2012, 3, 134.	4.8	52
44	TNF-α upregulates the A2B adenosine receptor gene: The role of NAD(P)H oxidase 4. Biochemical and Biophysical Research Communications, 2008, 375, 292-296.	2.1	51
45	A new path to platelet production through matrix sensing. Haematologica, 2017, 102, 1150-1160.	3.5	51
46	An adenosine analogue, IB-MECA, down-regulates estrogen receptor alpha and suppresses human breast cancer cell proliferation. Cancer Research, 2003, 63, 6413-23.	0.9	51
47	Deregulated Expression of c- in Megakaryocytes of Transgenic Mice Increases Megakaryopoiesis and Decreases Polyploidization. Journal of Biological Chemistry, 1996, 271, 22976-22982.	3.4	50
48	Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation. Biochemical and Biophysical Research Communications, 2008, 366, 156-161.	2.1	50
49	Physiological implications of adenosine receptorâ€mediated platelet aggregation. Journal of Cellular Physiology, 2011, 226, 46-51.	4.1	46
50	A Role for the Low-Affinity A _{2B} Adenosine Receptor in Regulating Superoxide Generation by Murine Neutrophils. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 1004-1012.	2.5	46
51	Differentiation of mesenchymal stem cells to osteoblasts and chondrocytes: a focus on adenosine receptors. Expert Reviews in Molecular Medicine, 2013, 15, e1.	3.9	46
52	Mpl Ligand Enhances the Transcription of the Cyclin D3 Gene: A Potential Role for Sp1 Transcription Factor. Blood, 1999, 93, 4208-4221.	1.4	45
53	The role of extracellular matrix stiffness in megakaryocyte and platelet development and function. American Journal of Hematology, 2018, 93, 430-441.	4.1	45
54	Activation of the macrophage A2b adenosine receptor regulates tumor necrosis factor–α levels following vascular injury. Experimental Hematology, 2009, 37, 533-538.	0.4	44

#	Article	IF	CITATIONS
55	Role of Lysyl Oxidase Propeptide in Secretion and Enzyme Activity. Journal of Cellular Biochemistry, 2010, 111, 1231-1243.	2.6	44
56	Direct visualization of the endomitotic cell cycle in living megakaryocytes: Differential patterns in low and high ploidy cells. Cell Cycle, 2008, 7, 2352-2356.	2.6	42
57	CD73-Dependent Generation of Adenosine and Endothelial Adora2b Signaling Attenuate Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2014, 25, 547-563.	6.1	40
58	Adenosine 2B receptors (A _{2B} AR) on enteric neurons regulate murine distal colonic motility. FASEB Journal, 2009, 23, 2727-2734.	0.5	38
59	Differential expression of NADPH oxidases in megakaryocytes and their role in polyploidy. Blood, 2009, 114, 1243-1249.	1.4	38
60	Targeting STUB1–tissue factor axis normalizes hyperthrombotic uremic phenotype without increasing bleeding risk. Science Translational Medicine, 2017, 9, .	12.4	38
61	New Roles for Cyclin E in Megakaryocytic Polyploidization. Journal of Biological Chemistry, 2010, 285, 18909-18917.	3.4	37
62	A2 Adenosine Receptors and Vascular Pathologies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 870-878.	2.4	37
63	Role of Apoptotic Processes in Platelet Biogenesis. Acta Haematologica, 2004, 111, 67-77.	1.4	35
64	Biology of Platelet Purinergic Receptors and Implications for Platelet Heterogeneity. Frontiers in Pharmacology, 2018, 9, 37.	3.5	35
65	Overexpression of A3 Adenosine Receptors in Smooth, Cardiac, and Skeletal Muscle Is Lethal to Embryos. Microvascular Research, 2002, 63, 61-69.	2.5	34
66	Regulation of Atherosclerosis and Associated Risk Factors by Adenosine and Adenosine Receptors. Current Atherosclerosis Reports, 2012, 14, 460-468.	4.8	34
67	Differential Tissue-Specific Function of Adora2b in Cardioprotection. Journal of Immunology, 2015, 195, 1732-1743.	0.8	34
68	IFN-Î ³ Prevents Adenosine Receptor (A2bR) Upregulation To Sustain the Macrophage Activation Response. Journal of Immunology, 2015, 195, 3828-3837.	0.8	33
69	Lysyl oxidase is associated with increased thrombosis and platelet reactivity. Blood, 2016, 127, 1493-1501.	1.4	33
70	The Macrophage A2b Adenosine Receptor Regulates Tissue Insulin Sensitivity. PLoS ONE, 2014, 9, e98775.	2.5	32
71	Cyclin D3 and megakaryocyte development: Exploration of a transgenic phenotype. Stem Cells, 1998, 16, 97-106.	3.2	31
72	Tissue-derived proinflammatory effect of adenosine A2B receptor in lung ischemia–reperfusion injury. Journal of Thoracic and Cardiovascular Surgery, 2010, 140, 871-877.	0.8	31

#	Article	IF	CITATIONS
73	An Adenosine Receptor-Krüppel-like Factor 4 Protein Axis Inhibits Adipogenesis. Journal of Biological Chemistry, 2014, 289, 21071-21081.	3.4	31
74	Platelet Dysfunction and Thrombosis in JAK2 ^{V617F} -Mutated Primary Myelofibrotic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e262-e272.	2.4	31
75	Upregulation of lysyl oxidase and adhesion to collagen of human megakaryocytes and platelets in primary myelofibrosis. Blood, 2017, 130, 829-831.	1.4	30
76	Activity of the A3 adenosine receptor gene promoter in transgenic mice: characterization of previously unidentified sites of expression. FEBS Letters, 2002, 532, 267-272.	2.8	29
77	Vascular smooth muscle cell polyploidization involves changes in chromosome passenger proteins and an endomitotic cell cycle. Experimental Cell Research, 2005, 305, 277-291.	2.6	29
78	A novel mechanism of control of NFκB activation and inflammation involving A2B adenosine receptors. Journal of Cell Science, 2012, 125, 4507-17.	2.0	29
79	Novel lysyl oxidase inhibitors attenuate hallmarks of primary myelofibrosis in mice. International Journal of Hematology, 2019, 110, 699-708.	1.6	29
80	Metabolites in a mouse cancer model enhance venous thrombogenicity through the aryl hydrocarbon receptor–tissue factor axis. Blood, 2019, 134, 2399-2413.	1.4	28
81	Oxidases and reactive oxygen species during hematopoiesis: A focus on megakaryocytes. Journal of Cellular Physiology, 2012, 227, 3355-3362.	4.1	27
82	A3 adenosine receptor deficiency does not influence atherogenesis. Journal of Cellular Biochemistry, 2004, 92, 1034-1043.	2.6	26
83	The Many Faces of the A2b Adenosine Receptor in Cardiovascular and Metabolic Diseases. Journal of Cellular Physiology, 2015, 230, 2891-2897.	4.1	26
84	The glycosylation-dependent interaction of perlecan core protein with LDL: implications for atherosclerosis. Journal of Lipid Research, 2015, 56, 266-276.	4.2	25
85	Properties of Ets-1 Binding to Chromatin and Its Effect on Platelet Factor 4 Gene Expression. Molecular and Cellular Biology, 2004, 24, 428-441.	2.3	24
86	Conditional overexpression of transgenes in megakaryocytes and platelets in vivo. Blood, 2005, 106, 1559-1564.	1.4	24
87	A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds. PLoS ONE, 2012, 7, e30032.	2.5	24
88	Characterization of the Mouse A3 Adenosine Receptor Gene: Exon/Intron Organization and Promoter Activity. Genomics, 1999, 57, 152-155.	2.9	23
89	Signaling by the Mpl receptor involves IKK and NF-?B. Journal of Cellular Biochemistry, 2002, 85, 523-535.	2.6	23
90	Upregulation of lysyl oxidase in vascular smooth muscle cells by cAMP: Role for adenosine receptor activation. Journal of Cellular Biochemistry, 1999, 75, 177-185.	2.6	22

#	Article	IF	CITATIONS
91	Polyploidy: Mechanisms and Cancer Promotion in Hematopoietic and Other Cells. Advances in Experimental Medicine and Biology, 2010, 676, 105-122.	1.6	22
92	Thrombotic Microangiopathy: A Multidisciplinary TeamÂApproach. American Journal of Kidney Diseases, 2017, 70, 715-721.	1.9	20
93	Vascular smooth muscle cell polyploidy: An adaptive or maladaptive response?. Journal of Cellular Physiology, 2008, 215, 588-592.	4.1	19
94	Activation of adenosine A2B receptors enhances ciliary beat frequency in mouse lateral ventricle ependymal cells. Cerebrospinal Fluid Research, 2009, 6, 15.	0.5	19
95	Bâ€Myb regulates the A _{2B} adenosine receptor in vascular smooth muscle cells. Journal of Cellular Biochemistry, 2008, 103, 1962-1974.	2.6	17
96	Major Histocompatibility Class II Transactivator Expression in Smooth Muscle Cells from A2b Adenosine Receptor Knock-out Mice. Journal of Biological Chemistry, 2008, 283, 14213-14220.	3.4	17
97	Chromosomal Mapping of the Mouse A3 Adenosine Receptor Gene,Adora3. Genomics, 1995, 30, 118-119.	2.9	16
98	Temporal and tissue-specific activation of aryl hydrocarbon receptor in discrete mouse models of kidney disease. Kidney International, 2020, 97, 538-550.	5.2	16
99	A mass spectrometric method for quantification of tryptophan-derived uremic solutes in human serum. Journal of Biological Methods, 2017, 4, e75.	0.6	16
100	Bone Marrow and Adipose Tissue Adenosine Receptors Effect on Osteogenesis and Adipogenesis. International Journal of Molecular Sciences, 2020, 21, 7470.	4.1	15
101	Building Interdisciplinary Biomedical Research Using Novel Collaboratives. Academic Medicine, 2013, 88, 179-184.	1.6	14
102	Role of a serine/threonine kinase, Mst1, in megakaryocyte differentiation. Journal of Cellular Biochemistry, 2000, 76, 44-60.	2.6	12
103	Survivin overexpression alone does not alter megakaryocyte ploidy nor interfere with erythroid/megakaryocytic lineage development in transgenic mice. Blood, 2008, 111, 4092-4095.	1.4	12
104	Adhesion to fibronectin via α5β1 integrin supports expansion of the megakaryocyte lineage in primary myelofibrosis. Blood, 2020, 135, 2286-2291.	1.4	12
105	Quantitative histological image analyses of reticulin fibers in a myelofibrotic mouse. Journal of Biological Methods, 2016, 3, e60.	0.6	12
106	EKLF and the Development of the Erythroid Lineage. , 0, , 71-84.		11
107	Repression of AIM-1 Kinase mRNA as Part of a Program of Genes Regulated by Mpl Ligand. Biochemical and Biophysical Research Communications, 2001, 282, 844-849.	2.1	11
108	Mpl Ligand Increases P2Y1 Receptor Gene Expression in Megakaryocytes with No Concomitant Change in Platelet Response to ADP. Molecular Pharmacology, 2001, 60, 1112-1120.	2.3	11

Κάτυα Κανίδ

#	Article	IF	CITATIONS
109	Actinin-1 binds to the C-terminus of A2B adenosine receptor (A2BAR) and enhances A2BAR cell-surface expression. Biochemical Journal, 2016, 473, 2179-2186.	3.7	10
110	Rat NAP1: cDNA cloning and upregulation by Mpl ligand. Gene, 1999, 226, 355-364.	2.2	9
111	Regulation of MMP-9 expression by the A2b adenosine receptor and its dependency on TNF-α signaling. Experimental Hematology, 2011, 39, 525-530.	0.4	9
112	Myeloproliferative Disorders and its Effect on Bone Homeostasis: The Role of Megakaryocytes. Blood, 2021, , .	1.4	9
113	A New Transgenic Mouse Model for the Study of Cell Cycle Control in Megakaryocytes. Stem Cells, 1996, 14, 181-187.	3.2	8
114	Hypertension in Transgenic Mice With Brain-Selective Overexpression of the Â2B-Adrenoceptor. American Journal of Hypertension, 2009, 22, 41-45.	2.0	8
115	Matrix Mechanosensation in the Erythroid and Megakaryocytic Lineages. Cells, 2020, 9, 894.	4.1	8
116	Evaluation of a Pan-Lysyl Oxidase Inhibitor, Pxs-5505, in Myelofibrosis: A Phase I, Randomized, Placebo Controlled Double Blind Study in Healthy Adults. Blood, 2020, 136, 16-16.	1.4	8
117	Megakaryocyte polyploidy is inhibited by lysyl oxidase propeptide. Cell Cycle, 2013, 12, 1242-1250.	2.6	7
118	G2A Protects Mice against Sepsis by Modulating Kupffer Cell Activation: Cooperativity with Adenosine Receptor 2b. Journal of Immunology, 2019, 202, 527-538.	0.8	7
119	Integrins and their role in megakaryocyte development and function. Experimental Hematology, 2022, 106, 31-39.	0.4	7
120	Survivin localization during endomitosis of high ploidy mouse megakaryocytes. Blood, 2010, 116, 2192-2193.	1.4	6
121	Catalyzing Interdisciplinary Research and Training. Academic Medicine, 2017, 92, 1399-1405.	1.6	6
122	Indoleamine 2,3-dioxygenase-1, a Novel Therapeutic Target for Post-Vascular Injury Thrombosis in CKD. Journal of the American Society of Nephrology: JASN, 2021, 32, 2834-2850.	6.1	6
123	Lysyl oxidase inhibition in primary myelofibrosis: A renewed strategy. , 2020, 1, 23-27.		6
124	Ectopic expression of the Aspergillus nidulans mitotic inducer, nimA kinase, in megakaryocytes. Experimental Hematology, 1999, 27, 594-604.	0.4	5
125	Repression of A TAFII32 Isoform as Part of a Program of Genes Regulated during Mpl Ligand-Induced Megakaryocyte Differentiation. Biochemical and Biophysical Research Communications, 1999, 262, 55-59.	2.1	5
126	Mpl Ligand Enhances the Transcription of the Cyclin D3 Gene: A Potential Role for Sp1 Transcription Factor. Blood, 1999, 93, 4208-4221.	1.4	5

1

#	Article	IF	CITATIONS
127	Promoting interdisciplinary research in departments of medicine: results from two models at Boston University School of Medicine. Transactions of the American Clinical and Climatological Association, 2013, 124, 275-82.	0.5	4
128	A selective effect of Mpl ligand on mRNA stabilization during megakaryocyte differentiation. FEBS Letters, 2002, 527, 279-283.	2.8	3
129	MAL: not just a leukemia inducer. Blood, 2009, 114, 3977-3978.	1.4	3
130	Partial reprogramming of heterologous cells by defined factors to generate megakaryocyte lineage-restricted biomolecules. Biotechnology Reports (Amsterdam, Netherlands), 2018, 20, e00285.	4.4	3
131	Emerging Factors Implicated in Fibrotic Organ–Associated Thrombosis: The Case of Two Organs. TH Open, 2019, 03, e165-e170.	1.4	3
132	The Scientist's Pledge. Academic Medicine, 2013, 88, 743.	1.6	2
133	Development of Megakaryocytes. , 2009, , 95-126.		2
134	Newly Identified Metabolites Connect Colon Cancer to Thrombosis. Blood, 2018, 132, 78-78.	1.4	2
135	t(8;21) AML and the AML1/ETO Fusion Gene: From Clinical Syndrome to Paradigm for the Molecular Basis of Acute Leukemia. , 0, , 409-424.		1
136	The Roles of the c-myc and c-myb Oncogenes in Hematopoiesis and Leukemogenesis. , 0, , 519-549.		1
137	The Role of GATA-1 and FOG in Erythroid and Megakaryocytic Differentiation. , 0, , 1-12.		1
138	RUNX1(AML1) and CBFB: Genes Required for the Development of all Definitive Hematopoietic Lineages. , 0, , 85-102.		1
139	Transcriptional Targets of the Vitamin D3 Receptor During Myeloid Cell Differentiation. , 0, , 163-180.		1
140	A tail with a leading role in megakaryocytes: the glycoprotein lb. Blood, 2004, 104, 3004-3005.	1.4	1
141	Ets and megakaryocytes: maturation matters. Blood, 2006, 108, 2139-2139.	1.4	1
142	Hematopoietic gene promoters subjected to a group-combinatorial study of DNA samples: identification of a megakaryocytic selective DNA signature. Nucleic Acids Research, 2006, 34, 4416-4428.	14.5	1
143	Platelet marginal bands: not so marginal. Blood, 2008, 111, 4423-4423.	1.4	1

144 The Role of BCL-6 in Normal Lymphoid System and non-Hodgkin's Lymphomas. , 0, , 271-289.

Κάτυα Κανίδ

#	Article	IF	CITATIONS
145	Characterization of Glycoproteoforms of Integrins α2 and β1 in Megakaryocytes in the Occurrence of JAK2V617F Mutation-Induced Primary Myelofibrosis. Molecular and Cellular Proteomics, 2022, 21, 100213.	3.8	1
146	Inhibition of Osteoblast Differentiation by JAK2V617F Megakaryocytes Derived From Male Mice With Primary Myelofibrosis. Frontiers in Oncology, 0, 12, .	2.8	1
147	E2A and the Development of B and T Lymphocytes. , 0, , 255-270.		0
148	The Role of RARÎ \pm and Its Fusion Partners in Acute Promyelocytic Leukemia. , 0, , 325-378.		0
149	MLL in Normal and Malignant Hematopoiesis. , 0, , 447-463.		0
150	Transcription Factors Implicated in Hematopoiesis: In Vivo Studies. , 0, , 571-591.		0
151	The Role of Pax5 (BSAP) in Early and Late B-Cell Development. , 0, , 217-228.		0
152	EVI1 Rearrangements in Malignant Hematopoiesis. , 0, , 393-408.		0
153	TEL/ETV6 Gene Rearrangements in Human Leukemias. , 0, , 425-445.		0
154	Chromosomal Translocations Associated with Disruption of Transcriptional Regulators in Leukemia and Lymphoma. , 0, , 593-597.		0
155	PU.1 and the Development of the Myeloid Lineage. , 0, , 103-115.		0
156	The Role of Retinoic Acid Receptors in Myeloid Differentiation. , 0, , 149-161.		0
157	Homeobox Gene Networks and the Regulation of Hematopoiesis. , 0, , 133-148.		0
158	The Role of Ikaros Family Genes in Lymphocyte Differentiation and Proliferation. , 0, , 181-199.		0
159	The Acetyltransferases CBP and p300: Molecular Integrators of Hematopoietic Transcription Involved in Chromosomal Translocations. , 0, , 497-517.		0
160	The LMO2 Master Gene; Its Role as a Transcription Regulator Determining Cell Fate in Leukemogenesis and in Hematopoiesis. , 0, , 483-495.		0
161	The Role of Early B-cell Factor in B-lymphocyte Development. , 0, , 313-324.		0
162	Janus Kinases and STAT Family Transcription Factors: Their Role in the Function and Development of Lymphoid Cells. , 0, , 229-254.		0

#	Article	IF	CITATIONS
163	NF-κB in Cell Life and Death. , 0, , 551-570.		0
164	The Role of Octamer Factors and Their Coactivators in the Lymphoid System. , 0, , 291-311.		0
165	Role of the TAL1/SCL Transcription Factor in Normal and Leukemic Hematopoiesis. , 0, , 51-70.		0
166	CCAAT/Enhancer-Binding Proteins in Myeloid Cells. , 0, , 117-131.		0
167	Regulation of Megakaryocyte and Erythroid Differentiation by NF-E2. , 0, , 13-29.		0
168	Transcription Factors Involved in Lineage-specific Gene Expression During Megakaryopoiesis. , 0, , 31-49.		0
169	Coactivators and Leukemia: The Acetylation Connection with Translocations Involving CBP, p300, TIF2, MOZ, and MLL. , 0, , 465-481.		0
170	The Leukemogenic Function of the inv(16) Fusion Gene CBFB-MYH11. , 0, , 379-391.		0
171	Activating mutation in the c-MPL gene and FET. Blood, 2004, 103, 3998-3999.	1.4	0
172	Megakaryocytes survive without survivin. Blood, 2009, 114, 4-4.	1.4	0
173	New roads to a megakaryocyte inner territory. Blood, 2014, 123, 803-804.	1.4	0
174	An Establishment of a System for Conditional Overexpression of Genes in Megakaryocytes and Platelets In Vivo Blood, 2004, 104, 4196-4196.	1.4	0
175	The A2b adenosine receptor gene is regulated by the cellular proliferation state: the role of Myb protein. FASEB Journal, 2006, 20, LB69.	0.5	0
176	A New Role for Flavoproteins in the Control of Megakaryocyte Polyploidy Blood, 2006, 108, 4235-4235.	1.4	0
177	A2b adenosine receptor regulation of adipocyte precursor fate and lineage determination: identification of a novel link to the stem cell factor KLF4. FASEB Journal, 2013, 27, 599.1.	0.5	0
178	The A2B adenosine receptor controls a fork in the road of mesenchymal stem cell differentiation. FASEB Journal, 2013, 27, 599.2.	0.5	0
179	From the ECM to Thrombosis: a New Role for the Matrix Enzyme Lysyl Oxidase. FASEB Journal, 2015, 29, 719.11.	0.5	0
180	A Newly Identified Platelet and Megakaryocyte Lysyl Oxidase-Adhesion to Collagen Axis in Human Primary Myelofibrosis. Blood, 2016, 128, 3133-3133.	1.4	0

0

#	Article	IF	CITATIONS
181	Integrin-Mediated Adhesion to Extracellular Matrix Protein Fibronectin Drives Megakaryocytosis in JAK2V617F+ Primary Myelofibrosis. Blood, 2019, 134, 4205-4205.	1.4	0

182 The Role of PU.1 in B-lymphocyte Development and Function. , 0, , 201-216.