Jincheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7142040/publications.pdf Version: 2024-02-01

INCHENC WANC

#	Article	IF	CITATIONS
1	Designing eutectic high entropy alloys of CoCrFeNiNb x. Journal of Alloys and Compounds, 2016, 656, 284-289.	2.8	340
2	Atomic-size effect and solid solubility of multicomponent alloys. Scripta Materialia, 2015, 94, 28-31.	2.6	339
3	Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scripta Materialia, 2017, 126, 15-19.	2.6	212
4	Design of D022 superlattice with superior strengthening effect in high entropy alloys. Acta Materialia, 2019, 167, 275-286.	3.8	172
5	Uncovering the eutectics design by machine learning in the Al–Co–Cr–Fe–Ni high entropy system. Acta Materialia, 2020, 182, 278-286.	3.8	143
6	Phase-field study of competitive dendritic growth of converging grains during directional solidification. Acta Materialia, 2012, 60, 1478-1493.	3.8	131
7	Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Materials and Design, 2016, 104, 259-264.	3.3	128
8	A casting eutectic high entropy alloy with superior strength-ductility combination. Materials Letters, 2019, 253, 268-271.	1.3	109
9	Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate. Journal of Alloys and Compounds, 2016, 667, 53-57.	2.8	106
10	Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system. Scripta Materialia, 2017, 131, 42-46.	2.6	81
11	Synergistic effect of Ti and Al on L12-phase design in CoCrFeNi-based high entropy alloys. Intermetallics, 2019, 110, 106476.	1.8	76
12	A study of the effect of Y on the mechanical properties, damping properties of high damping Mg–0.6%Zr based alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 517, 114-117.	2.6	52
13	Strain partitioning enables excellent tensile ductility in precipitated heterogeneous high-entropy alloys with gigapascal yield strength. International Journal of Plasticity, 2021, 144, 103022.	4.1	51
14	Kinetic Pathways and Mechanisms of Two-Step Nucleation in Crystallization. Journal of Physical Chemistry Letters, 2016, 7, 5008-5014.	2.1	50
15	Phase field modeling the selection mechanism of primary dendritic spacing in directional solidification. Acta Materialia, 2012, 60, 1957-1964.	3.8	48
16	The intrinsic mechanism of corrosion resistance for FCC high entropy alloys. Science China Technological Sciences, 2018, 61, 189-196.	2.0	48
17	Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging. Journal of Materials Science and Technology, 2021, 69, 156-167.	5.6	48
18	Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi. Intermetallics, 2014, 53, 183-186.	1.8	47

#	Article	IF	CITATIONS
19	Solid solubility, precipitates, and stacking fault energy of micro-alloyed CoCrFeNi high entropy alloys. Journal of Alloys and Compounds, 2018, 769, 490-502.	2.8	46
20	Orientation selection process during the early stage of cubic dendrite growth: A phase-field crystal study. Acta Materialia, 2012, 60, 5501-5507.	3.8	45
21	Direct laser deposited bulk CoCrFeNiNbx high entropy alloys. Intermetallics, 2019, 114, 106592.	1.8	45
22	Effect of initial particle size distribution on the dynamics of transient Ostwald ripening: A phase field study. Acta Materialia, 2015, 90, 10-26.	3.8	43
23	Abnormal γâ€3 - ε phase transformation in the CoCrFeNiNb0.25 high entropy alloy. Scripta Materialia, 2018, 146, 281-285.	2.6	43
24	Tuning the defects in face centered cubic high entropy alloy via temperature-dependent stacking fault energy. Scripta Materialia, 2018, 155, 134-138.	2.6	41
25	Remelting induced fully-equiaxed microstructures with anomalous eutectics in the additive manufactured Ni32Co30Cr10Fe10Al18 eutectic high-entropy alloy. Scripta Materialia, 2021, 201, 113952.	2.6	41
26	Damping properties of Mg–Ca binary alloys. Physica B: Condensed Matter, 2008, 403, 2438-2442.	1.3	40
27	Quantitative determination of the lattice constant in high entropy alloys. Scripta Materialia, 2019, 162, 468-471.	2.6	40
28	Three-dimensional phase-field crystal modeling of fcc and bcc dendritic crystal growth. Journal of Crystal Growth, 2011, 334, 146-152.	0.7	39
29	Phase-field-crystal simulation of nonequilibrium crystal growth. Physical Review E, 2014, 89, 012405.	0.8	38
30	Branching-induced grain boundary evolution during directional solidification of columnar dendritic grains. Acta Materialia, 2017, 136, 148-163.	3.8	37
31	Two-way design of alloys for advanced ultra supercritical plants based on machine learning. Computational Materials Science, 2018, 155, 331-339.	1.4	37
32	Phase-field simulation of microstructure development involving nucleation and crystallographic orientations in alloy solidification. Journal of Crystal Growth, 2007, 309, 65-69.	0.7	34
33	On the stagnation of grain growth in nanocrystalline materials. Scripta Materialia, 2009, 60, 945-948.	2.6	34
34	Atomic packing and size effect on the Hume-Rothery rule. Intermetallics, 2019, 109, 139-144.	1.8	33
35	The phase stability of Ni2CrFeMox multi-principal-component alloys with medium configurational entropy. Materials and Design, 2015, 85, 1-6.	3.3	29
36	Kinetic ways of tailoring phases in high entropy alloys. Scientific Reports, 2016, 6, 34628.	1.6	29

#	Article	IF	CITATIONS
37	Molecular dynamics investigation of the local structure in iron melts and its role in crystal nucleation during rapid solidification. Physical Chemistry Chemical Physics, 2019, 21, 4122-4135.	1.3	29
38	Interfacial undercooling in solidification of colloidal suspensions: analyses with quantitative measurements. Scientific Reports, 2016, 6, 28434.	1.6	28
39	Onset of initial planar instability with surface-tension anisotropy during directional solidification. Physical Review E, 2009, 80, 052603.	0.8	27
40	Grouping strategy in eutectic multi-principal-component alloys. Materials Chemistry and Physics, 2019, 221, 138-143.	2.0	27
41	Revealing the Selection of σ and μ Phases in CoCrFeNiMox High Entropy Alloys by CALPHAD. Journal of Phase Equilibria and Diffusion, 2018, 39, 446-453.	0.5	25
42	Precipitation and responding damping behavior of heat-treated AZ31 magnesium alloy. Acta Metallurgica Sinica (English Letters), 2009, 22, 1-6.	1.5	24
43	Non-uniplanar competitive growth of columnar dendritic grains during directional solidification in quasi-2D and 3D configurations. Materials and Design, 2018, 151, 141-153.	3.3	23
44	High Entropy Alloys: From Bulk Metallic Materials to Nanoparticles. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4986-4990.	1.1	23
45	Design of high entropy alloys based on the experience from commercial superalloys. Philosophical Magazine Letters, 2015, 95, 1-6.	0.5	22
46	Coupling eutectic nucleation mechanism investigated by phase field crystal model. Acta Materialia, 2018, 145, 175-185.	3.8	22
47	The incredible excess entropy in high entropy alloys. Scripta Materialia, 2019, 168, 19-22.	2.6	22
48	Single Ice Crystal Growth with Controlled Orientation during Directional Freezing. Journal of Physical Chemistry B, 2021, 125, 970-979.	1.2	22
49	Anomalous effect of lattice misfit on the coarsening behavior of multicomponent L12 phase. Scripta Materialia, 2020, 183, 111-116.	2.6	22
50	Phase-field simulation with the CALPHAD method for the microstructure evolution of multi-component Ni-base superalloys. Intermetallics, 2008, 16, 239-245.	1.8	21
51	<i>In situ</i> observation the interface undercooling of freezing colloidal suspensions with differential visualization method. Review of Scientific Instruments, 2015, 86, 084901.	0.6	21
52	Phase-field modeling of isothermal dendritic coarsening in ternary alloys. Acta Materialia, 2008, 56, 4585-4592.	3.8	20
53	Predicting growth direction of tilted dendritic arrays during directional solidification. Journal of Crystal Growth, 2011, 328, 108-113.	0.7	20
54	Interfacial free energy adjustable phase field crystal model for homogeneous nucleation. Soft Matter, 2016, 12, 4666-4673.	1.2	20

#	Article	IF	CITATIONS
55	Elemental partitioning as a route to design precipitation-hardened high entropy alloys. Journal of Materials Science and Technology, 2021, 72, 52-60.	5.6	20
56	Rapid alloy design from superior eutectic high-entropy alloys. Scripta Materialia, 2022, 219, 114875.	2.6	20
57	Phase selection of BCC/B2 phases for the improvement of tensile behaviors in FeNiCrAl medium entropy alloy. Journal of Alloys and Compounds, 2022, 916, 165382.	2.8	19
58	Eutectic dual-phase microstructure modulated porous high-entropy alloys as high-performance bifunctional electrocatalysts for water splitting. Journal of Materials Chemistry A, 2022, 10, 11110-11120.	5.2	18
59	Controls on microstructural features during solidification of colloidal suspensions. Acta Materialia, 2018, 157, 288-297.	3.8	17
60	Design Fe-based Eutectic Medium-Entropy Alloys Fe2NiCrNbx. Acta Metallurgica Sinica (English) Tj ETQqO 0 0 rgl	BT /Qverlc 1.5	ock 10 Tf 50 5 17
61	Phase field investigation on cellular tip splitting during directional solidification. Scripta Materialia, 2009, 61, 915-918.	2.6	16
62	Quantitative investigation of cellular growth in directional solidification by phase-field simulation. Physical Review E, 2011, 84, 041604.	0.8	16
63	Effect of pickling processes on the microstructure and properties of electroless Ni–P coating on Mg–7.5Li–2Zn–1Y alloy. Progress in Natural Science: Materials International, 2014, 24, 655-662.	1.8	16
64	Modified phase-field-crystal model for solid-liquid phase transitions. Physical Review E, 2015, 92, 013309.	0.8	16
65	Dynamic particle packing in freezing colloidal suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531, 93-98.	2.3	15
66	Mechanical relaxation and fracture of phase field crystals. Physical Review E, 2019, 99, 013302.	0.8	15
67	Dislocation nucleation from Zr–Nb bimetal interfaces cooperating with the dynamic evolution of interfacial dislocations. International Journal of Plasticity, 2020, 135, 102830.	4.1	15
68	A precipitation-strengthened high-entropy alloy for additive manufacturing. Additive Manufacturing, 2020, 35, 101410.	1.7	15
69	Effect of Re and Ru on the phase stability and coarsening kinetics of L12 phase in a Ni29Co27Fe27Cr3Al7Ti7 high entropy alloy. Journal of Alloys and Compounds, 2021, 866, 158904.	2.8	14
70	Fourier synthesis predicting onset of the initial instability during directional solidification. Applied Physics Letters, 2009, 94, 061920.	1.5	12
71	Implementing continuous freeze-casting by separated control of thermal gradient and solidification rate. International Journal of Heat and Mass Transfer, 2019, 133, 986-993.	2.5	12
72	Phase-field investigation of effects of surface-tension anisotropy on deterministic sidebranching in solutal dendritic growth. Physical Review E, 2008, 78, 042601.	0.8	11

#	Article	IF	CITATIONS
73	Strain mapping in nanocrystalline grains simulated by phase field crystal model. Philosophical Magazine, 2015, 95, 973-984.	0.7	11
74	Atomistic Mechanism Underlying Nucleation in Al–Cu Alloys with Different Compositions and Cooling Rates. Journal of Physical Chemistry C, 2021, 125, 3480-3494.	1,5	11
75	A microstructure-informatic strategy for Vickers hardness forecast of austenitic steels from experimental data. Materials and Design, 2021, 201, 109497.	3.3	11
76	Phase field modeling the growth of Ni3Al layer in the β/γ diffusion couple of Ni–Al binary system. Intermetallics, 2011, 19, 229-233.	1.8	10
77	Phase field crystal modeling of grain rotation with small initial misorientations in nanocrystalline materials. Computational Materials Science, 2014, 88, 163-169.	1.4	10
78	Interface instability modes in freezing colloidal suspensions: revealed from onset of planar instability. Scientific Reports, 2016, 6, 23358.	1.6	10
79	Novel B2-strengthening Ni–Co–Cr–Al medium-entropy alloys with prominent mechanical performance. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142856.	2.6	10
80	Endless recrystallization of high-entropy alloys at high temperature. Journal of Materials Science and Technology, 2022, 128, 71-81.	5.6	9
81	Microstructure and mechanical properties of an Al–Ni–Co intermetallics reinforced Al matrix composite. Journal of Materials Science, 2009, 44, 3420-3427.	1.7	8
82	Investigation into microsegregation during solidification of a binary alloy by phase-field simulations. Journal of Crystal Growth, 2009, 311, 1217-1222.	0.7	8
83	Unique visualization of multiply oriented lattice structures using a continuous wavelet transform. Computer Physics Communications, 2013, 184, 2489-2493.	3.0	8
84	Effects of surfactant on capillary evaporation process with thick films. International Journal of Heat and Mass Transfer, 2015, 88, 406-410.	2.5	8
85	Yielding and jerky plasticity of tilt grain boundaries in high-temperature graphene. Carbon, 2019, 153, 242-256.	5.4	8
86	Phase-field simulation of microstructure evolution in electron beam additive manufacturing. European Physical Journal E, 2020, 43, 35.	0.7	8
87	Three-dimensional Phase Field Modeling of the Faceted Cellular Growth. ISIJ International, 2010, 50, 1901-1907.	0.6	7
88	Phase-field-crystal investigation of the morphology of a steady-state dendrite tip on the atomic scale. Physical Review E, 2017, 95, 062803.	0.8	7
89	In situ observation of the unstable lens growth in freezing colloidal suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 681-688.	2.3	7
90	Interactions between grain boundary and compositional domain boundary during spinodal decomposition in nanocrystalline alloys. Philosophical Magazine, 2013, 93, 2122-2132.	0.7	6

#	Article	lF	CITATIONS
91	Phase field simulation of the interface morphology evolution and its stability during directional solidification of binary alloys. Science in China Series D: Earth Sciences, 2008, 51, 362-370.	0.9	5
92	Phase field simulation of grain growth with grain boundary segregation. International Journal of Materials Research, 2010, 101, 555-559.	0.1	5
93	GPU-accelerated phase field simulation of directional solidification. Science China Technological Sciences, 2014, 57, 1191-1197.	2.0	5
94	Microstructure Evolution of Mg–4.3Zn–0.7Y–0.6Zr Alloy during Solution Heat Treatment. Materials Transactions, 2014, 55, 264-269.	0.4	5
95	Uncoupling Growth Mechanisms of Binary Eutectics during Rapid Solidification. Journal of Physical Chemistry C, 2017, 121, 8204-8210.	1.5	5
96	Elastic strain response in the modified phase-field-crystal model. Chinese Physics B, 2017, 26, 090702.	0.7	5
97	Size effects of shear deformation response for nano-single crystals examined by the phase-field-crystal model. Computational Materials Science, 2017, 127, 121-127.	1.4	5
98	Interactions between Nanoparticles and Polymers in the Diffusion Boundary Layer during Freezing Colloidal Suspensions. Langmuir, 2019, 35, 10446-10452.	1.6	5
99	An atomic scale study of two-dimensional quasicrystal nucleation controlled by multiple length scale interactions. Soft Matter, 2020, 16, 5718-5726.	1.2	5
100	Distinct Recrystallization Kinetics in Ni–Co–Cr–Fe-Based Single-Phase High-Entropy Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3799-3810.	1.1	5
101	Non-monotonous effect of pre-strain on the precipitates and strengthening mechanisms of high-entropy alloys. Journal of Alloys and Compounds, 2022, 906, 164338.	2.8	5
102	Phase-Field Simulation of Ni-Al-Cr System with Chemical Free Energy Using CALPHAD Method. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70, 682-685.	0.2	4
103	Speed-dependent ice bandings in freezing colloidal suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 543, 126-132.	2.3	4
104	The formation mechanism of special globular surface grain during the solidification of laser surface remelted near β titanium alloys. Computational Materials Science, 2021, 191, 110353.	1.4	4
105	The planar instability during unidirectional freezing of a macromolecular polymer solution: Diffusion-controlled or not?. Physica B: Condensed Matter, 2021, 610, 412923.	1.3	4
106	An atomistic investigation of branching mechanism during lamellar eutectic solidification. Computational Materials Science, 2021, 196, 110536.	1.4	4
107	Globalâ€Oriented Strategy for Searching Ultrastrength Martensitic Stainless Steels. Advanced Theory and Simulations, 0, , 2100411.	1.3	4
108	Deformation Behaviors of an Additive-Manufactured Ni32Co30Cr10Fe10Al18 Eutectic High Entropy Alloy at Ambient and Elevated Temperatures. Acta Metallurgica Sinica (English Letters), 2022, 35, 1607-1616.	1.5	4

#	Article	IF	CITATIONS
109	Molecular-Level Insights into the Nucleation Mechanism of One-Component Soft Matter Icosahedral Quasicrystal Studied by Phase-Field Crystal Simulations. Crystal Growth and Design, 2022, 22, 2637-2643.	1.4	4
110	Three-dimensional multi-phase field simulation of the lamellar growth stability in a directionally solidified hypereutectic CBr4–C2Cl6 alloy. Journal of Crystal Growth, 2009, 311, 2496-2500.	0.7	3
111	Effects of a disconnection dipole on the shear-coupled grain boundary migration. Computational Materials Science, 2015, 109, 253-257.	1.4	3
112	Precisely detecting atomic position of atomic intensity images. Ultramicroscopy, 2015, 150, 74-78.	0.8	3
113	Existence and forming mechanism of metastable phase in crystallization. Computational Materials Science, 2016, 122, 167-176.	1.4	3
114	Effect of secondary arm orientation on unusual overgrowth at converging grain boundary during directional solidification in 3D. Computational Materials Science, 2020, 176, 109531.	1.4	3
115	Quantitative determination of tip undercooling of faceted sea ice with in situ experiments. Journal of Physics Condensed Matter, 2021, 33, 36LT01.	0.7	3
116	Phase-field study of spinodal decomposition under effect of grain boundary*. Chinese Physics B, 2021, 30, 088101.	0.7	3
117	On Ti6Al4V Microsegregation in Electron Beam Additive Manufacturing with Multiphase-Field Simulation Coupled with Thermodynamic Data. Acta Metallurgica Sinica (English Letters), 0, , 1.	1.5	3
118	Atomic structures and migration mechanisms of interphase boundaries during body- to face-centered cubic phase transformations. Journal of Applied Crystallography, 2019, 52, 1176-1188.	1.9	3
119	Crossover from lamellar to intersected ice morphologies within a single ice crystal during unidirectional freezing of an aqueous solution. Journal of Crystal Growth, 2022, 577, 126398.	0.7	3
120	Atomic-scale investigation of coarsening kinetics by the phase-field crystal model. Europhysics Letters, 2021, 135, 56002.	0.7	3
121	Competitive growth of diverging columnar grains during directional solidification: A three-dimensional phase-field study. Computational Materials Science, 2022, 210, 111061.	1.4	3
122	Phase field modeling for dendritic morphology transition and micro-segregation in multi-component alloys. Science in China Series D: Earth Sciences, 2009, 52, 344-351.	0.9	2
123	Interfacial reaction between Al72Ni12Co16 decagonal quasicrystalline particles and liquid aluminium. Journal of Materials Science, 2010, 45, 1438-1442.	1.7	2
124	Thermodynamic modelling and Gulliver-Scheil simulation of multi-component Al alloys. IOP Conference Series: Materials Science and Engineering, 2012, 27, 012082.	0.3	2
125	Atomic scale modeling of vicinal surface growth from melts using the phase-field crystal method. Journal of Crystal Growth, 2013, 374, 11-17.	0.7	2
126	Description of order-disorder transitions based on the phase-field-crystal model. Physical Review E, 2017, 95, 043307.	0.8	2

#	Article	IF	CITATIONS
127	Migration mechanisms of interphase boundaries with irrational orientation relationships in massive transformations: A phase-field crystal study. Computational Materials Science, 2019, 159, 420-427.	1.4	2
128	Tilting Behavior of Lamellar Ice Tip during Unidirectional Freezing of Aqueous Solutions. Langmuir, 2021, 37, 10579-10587.	1.6	2
129	A neural-network based framework of developing cross interaction in alloy embedded-atom method potentials: application to Zr–Nb alloy. Journal of Physics Condensed Matter, 2021, 33, 084004.	0.7	2
130	Connections between structural characteristics and crystal nucleation of Al–Sm glasses near glass transition temperature. Journal of Non-Crystalline Solids, 2022, 588, 121637.	1.5	2
131	Phase-field simulation of the effect of interactions between ordered domains on transformation kinetics in precipitation. Modelling and Simulation in Materials Science and Engineering, 2008, 16, 025004.	0.8	1
132	Phase-Field Simulation of the Elastic Effect on the Transformation Kinetics in Precipitation. Materials Transactions, 2008, 49, 133-138.	0.4	1
133	Three-Dimensional Multiphase Field Modeling of the Effect of Lamellar Thickness on the Eutectic Growth. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1670-1674.	1.1	1
134	Competitive grain growth in directional solidification investigated by phase field simulation. IOP Conference Series: Materials Science and Engineering, 2012, 33, 012098.	0.3	1
135	Quasi-two-dimensional equilibrium solid/liquid interface of colloids at low osmotic pressure. Journal of Crystal Growth, 2014, 385, 106-110.	0.7	1
136	Two-dimensional liquid crystalline growth within a phase-field-crystal model. Physical Review E, 2015, 92, 012504.	0.8	1
137	Atomic investigation of steady-state dendrite tips by using phase-field crystal method. IOP Conference Series: Materials Science and Engineering, 2015, 84, 012070.	0.3	1
138	On the roughening transition of solid/liquid interface in multicomponent alloys. Journal of Crystal Growth, 2018, 502, 30-34.	0.7	1
139	Phase-field study on the effect of initial particle aggregation on the transient coarsening behaviors. Modelling and Simulation in Materials Science and Engineering, 2020, 28, 075007.	0.8	1
140	SOLUTE FIELD ACROSS DIFFUSE INTERFACE DURING TRANSIENT PROCESS OF BINARY ALLOYS SOLIDIFICATION IN PHASE FIELD MODE. International Journal of Modern Physics B, 2010, 24, 2768-2773.	1.0	0
141	Phase field investigation on the selection of initial sidebranch spacing in directional solidification. IOP Conference Series: Materials Science and Engineering, 2012, 27, 012009.	0.3	0
142	Atomistic investigation of homogeneous nucleation in undercooled liquid. Philosophical Magazine, 2017, 97, 2255-2267.	0.7	0
143	Strengthening Porous PVA with TiO ₂ Structure by an Ice-Templating Method. Chinese Physics Letters, 2018, 35, 088101.	1.3	0
144	Remelting Induced Fully-Equiaxed Microstructures with Anomalous Eutectics in the Additive Manufactured Ni ₃₂ Co ₃₀ Cr ₁₀ Fe ₁₀ Al ₁₈ Eutectic High-Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
145	One-dimensional ledges and migration mechanism of incoherent interphase boundaries. Journal of Applied Crystallography, 2021, 54, 211-216.	1.9	0
146	A phase-field study on interaction process of moving grain boundary and spinodal decomposition. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 078101.	0.2	0
147	In-situ comparison of interface instability of basal and edge planes during unidirectional growth of sea ice. Journal of Colloid and Interface Science, 2022, 625, 169-177.	5.0	0