## Amaia Cipitria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7142037/publications.pdf Version: 2024-02-01



ΔΜΛΙΛ ΓΙΔΙΤΡΙΛ

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A humanised rat model of osteosarcoma reveals ultrastructural differences between bone and mineralised tumour tissue. Bone, 2022, 158, 116018.                                                                 | 2.9  | 8         |
| 2  | Microenvironment-mediated cancer dormancy: Insights from metastability theory. Proceedings of the<br>National Academy of Sciences of the United States of America, 2022, 119, .                                | 7.1  | 17        |
| 3  | An in silico model predicts the impact of scaffold design in large bone defect regeneration. Acta<br>Biomaterialia, 2022, 145, 329-341.                                                                        | 8.3  | 16        |
| 4  | In vivo microCT-based time-lapse morphometry reveals anatomical site-specific differences in bone<br>(re)modeling serving as baseline parameters to detect early pathological events. Bone, 2022, 161, 116432. | 2.9  | 4         |
| 5  | Optical quantification of intracellular mass density and cell mechanics in 3D mechanical confinement. Soft Matter, 2021, 17, 853-862.                                                                          | 2.7  | 18        |
| 6  | Dynamic Mechanical Control of Alginate-Fibronectin Hydrogels with Dual Crosslinking: Covalent and Ionic. Polymers, 2021, 13, 433.                                                                              | 4.5  | 11        |
| 7  | Targeted 2D histology and ultrastructural bone analysis based on 3D microCT anatomical locations.<br>MethodsX, 2021, 8, 101480.                                                                                | 1.6  | 6         |
| 8  | Osmotic pressure modulates single cell cycle dynamics inducing reversible growth arrest and reactivation of human metastatic cells. Scientific Reports, 2021, 11, 13455.                                       | 3.3  | 15        |
| 9  | Role of extracellular matrix structural components and tissue mechanics in the development of postoperative pancreatic fistula. Journal of Biomechanics, 2021, 128, 110714.                                    | 2.1  | 2         |
| 10 | An Early Myeloma Bone Disease Model in Skeletally Mature Mice as a Platform for Biomaterial<br>Characterization of the Extracellular Matrix. Journal of Oncology, 2020, 2020, 1-12.                            | 1.3  | 3         |
| 11 | Dual alginate crosslinking for local patterning of biophysical and biochemical properties. Acta<br>Biomaterialia, 2020, 115, 185-196.                                                                          | 8.3  | 15        |
| 12 | Human and mouse bones physiologically integrate in a humanized mouse model while maintaining species-specific ultrastructure. Science Advances, 2020, 6, .                                                     | 10.3 | 10        |
| 13 | Alginate Hydrogels for <i>In Vivo</i> Bone Regeneration: The Immune Competence of the Animal Model<br>Matters. Tissue Engineering - Part A, 2020, 26, 852-862.                                                 | 3.1  | 24        |
| 14 | A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction. Nature Protocols, 2020, 15, 877-924.                                                             | 12.0 | 75        |
| 15 | Enzymatically-degradable alginate hydrogels promote cell spreading and in vivo tissue infiltration.<br>Biomaterials, 2019, 217, 119294.                                                                        | 11.4 | 95        |
| 16 | Hydrolytically-degradable click-crosslinked alginate hydrogels. Biomaterials, 2018, 181, 189-198.                                                                                                              | 11.4 | 79        |
| 17 | Mechanotransduction and Growth Factor Signalling to Engineer Cellular Microenvironments.<br>Advanced Healthcare Materials, 2017, 6, 1700052.                                                                   | 7.6  | 56        |
| 18 | Scaffold curvature-mediated novel biomineralization process originates a continuous soft tissue-to-bone interface. Acta Biomaterialia, 2017, 60, 64-80.                                                        | 8.3  | 62        |

Amaia Cipitria

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | In-situ tissue regeneration through SDF-1α driven cell recruitment and stiffness-mediated bone regeneration in a critical-sized segmental femoral defect. Acta Biomaterialia, 2017, 60, 50-63.                     | 8.3  | 62        |
| 20 | BMP delivery complements the guiding effect of scaffold architecture without altering bone<br>microstructure in critical-sized long bone defects: A multiscale analysis. Acta Biomaterialia, 2015, 23,<br>282-294. | 8.3  | 55        |
| 21 | Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomaterials, 2013, 34, 9960-9968.                                                              | 11.4 | 120       |
| 22 | A Tissue Engineering Solution for Segmental Defect Regeneration in Load-Bearing Long Bones. Science<br>Translational Medicine, 2012, 4, 141ra93.                                                                   | 12.4 | 301       |
| 23 | Porous scaffold architecture guides tissue formation. Journal of Bone and Mineral Research, 2012, 27, 1275-1288.                                                                                                   | 2.8  | 97        |
| 24 | Design, fabrication and characterization of PCL electrospun scaffolds—a review. Journal of Materials<br>Chemistry, 2011, 21, 9419.                                                                                 | 6.7  | 499       |
| 25 | Custom-made composite scaffolds for segmental defect repair in long bones. International<br>Orthopaedics, 2011, 35, 1229-1236.                                                                                     | 1.9  | 118       |
| 26 | Designing biomimetic scaffolds for bone regeneration: why aim for a copy of mature tissue properties if nature uses a different approach?. Soft Matter, 2010, 6, 4976.                                             | 2.7  | 88        |
| 27 | Heat Transfer Through Plasma-Sprayed Thermal Barrier Coatings in Gas Turbines: A Review of Recent<br>Work. Journal of Thermal Spray Technology, 2009, 18, 809-821.                                                 | 3.1  | 143       |
| 28 | Sintering characteristics of plasma sprayed zirconia coatings containing different stabilisers.<br>Surface and Coatings Technology, 2009, 203, 1069-1074.                                                          | 4.8  | 100       |
| 29 | A sintering model for plasma-sprayed zirconia TBCs. Part I: Free-standing coatings. Acta Materialia, 2009, 57, 980-992.                                                                                            | 7.9  | 185       |
| 30 | A sintering model for plasma-sprayed zirconia thermal barrier coatings. Part II: Coatings bonded to a<br>rigid substrate. Acta Materialia, 2009, 57, 993-1003.                                                     | 7.9  | 85        |
| 31 | Properties and Performance of High-Purity Thermal Barrier Coatings. Journal of Thermal Spray<br>Technology, 2007, 16, 804-808.                                                                                     | 3.1  | 46        |
| 32 | Sintering Kinetics of Plasma-Sprayed Zirconia TBCs. Journal of Thermal Spray Technology, 2007, 16, 809-815.                                                                                                        | 3.1  | 23        |
| 33 | Effects of Impurity Content on the Sintering Characteristics of Plasma-Sprayed Zirconia. Journal of Thermal Spray Technology, 2007, 16, 798-803.                                                                   | 3.1  | 51        |