Sanaz Mostaghim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7141711/publications.pdf

Version: 2024-02-01

516710 454955 2,229 145 16 30 citations g-index h-index papers 166 166 166 1526 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Scalable Many-Objective Pathfinding Benchmark Suite. IEEE Transactions on Evolutionary Computation, 2022, 26, 188-194.	10.0	12
2	Hybrid Systems for Tuning andÂLearning Fuzzy Systems. Texts in Computer Science, 2022, , 471-487.	0.7	0
3	Learning Graphical Models. Texts in Computer Science, 2022, , 579-593.	0.7	0
4	Elements of Evolutionary Algorithms. Texts in Computer Science, 2022, , 255-285.	0.7	0
5	General Neural Networks. Texts in Computer Science, 2022, , 39-52.	0.7	0
6	Evidence Propagation. Texts in Computer Science, 2022, , 565-578.	0.7	0
7	Recurrent Networks. Texts in Computer Science, 2022, , 195-212.	0.7	0
8	Computational Intelligence. Texts in Computer Science, 2022, , .	0.7	13
9	Decision Graphs. Texts in Computer Science, 2022, , 605-615.	0.7	0
10	Multi-layer Perceptrons. Texts in Computer Science, 2022, , 53-124.	0.7	23
11	Decompositions. Texts in Computer Science, 2022, , 551-563.	0.7	0
12	Fundamental Evolutionary Algorithms. Texts in Computer Science, 2022, , 287-341.	0.7	0
13	Neural Networks: Mathematical Remarks. Texts in Computer Science, 2022, , 213-221.	0.7	0
14	Radial Basis Function Networks. Texts in Computer Science, 2022, , 125-148.	0.7	0
15	Computational Swarm Intelligence. Texts in Computer Science, 2022, , 343-369.	0.7	0
16	Introduction to Artificial Neural Networks. Texts in Computer Science, 2022, , 7-13.	0.7	1
17	Genetic Programming-Based Inverse Kinematics forÂRobotic Manipulators. Lecture Notes in Computer Science, 2022, , 130-145.	1.3	1
18	Availability-Aware Multiobjective Task Allocation Algorithm for Internet of Things Networks. IEEE Internet of Things Journal, 2022, 9, 12945-12953.	8.7	3

#	Article	IF	Citations
19	Driving Swarm: A Swarm Robotics Framework for Intelligent Navigation in a Self-organized World. , 2022, , .		3
20	MOSAIK: A Formal Model for Self-Organizing Manufacturing Systems. IEEE Pervasive Computing, 2021, 20, 9-18.	1.3	9
21	Kooperation mittels Schwarmintelligenz. , 2021, , 55-69.		1
22	IEEE CIS VP-Member Activities Vision Statement [Society Briefs]. IEEE Computational Intelligence Magazine, 2021, 16, 8-8.	3.2	0
23	Multi-featured collective perception with Evidence Theory: tackling spatial correlations. Swarm Intelligence, 2021, 15, 83-110.	2.2	11
24	Tracking the Heritage of Genes in Evolutionary Algorithms. , 2021, , .		4
25	Optimal Control Policies to Address the Pandemic Health-Economy Dilemma. , 2021, , .		3
26	Achieving task allocation in swarm intelligence with bi-objective embodied evolution. Swarm Intelligence, 2021, 15, 287-310.	2.2	2
27	Unit-aware multi-objective genetic programming for the prediction of the stokes flow around a sphere. , 2021, , .		2
28	A Single-Copter UWB-Ranging-Based Localization System Extendable to a Swarm of Drones. Drones, 2021, 5, 85.	4.9	9
29	Discrete collective estimation in swarm robotics with distributed Bayesian belief sharing. Swarm Intelligence, 2021, 15, 377-402.	2.2	8
30	Many-Objective Pathfinding Based on FrÃ@chet Similarity Metric. Lecture Notes in Computer Science, 2021, , 375-386.	1.3	2
31	The Effects of Crowding Distance and Mutation in Multimodal and Multi-objective Optimization Problems. Computational Methods in Applied Sciences (Springer), 2021, , 115-130.	0.3	3
32	Multi-Objective Optimization and Decision-Making in Context Steering. , 2021, , .		2
33	The Impact of Population Size on the Convergence of Multi-objective Evolutionary Algorithms. , 2021, ,		4
34	A Multi-objective Multimodal Evolutionary Algorithm Using a Novel Tournament and Environmental Selections., 2021,,.		0
35	Meeting Demands for Mass Customization: A Hybrid Organic Computing Approach. , 2021, , .		2
36	A Comparative Study of Different Encodings on the Multi-Objective Pathfinding Problem. , 2021, , .		1

3

#	Article	IF	Citations
37	Mobility-Aware Multi-Objective Task Allocation for Wireless Sensor Networks., 2021,,.		4
38	A Customized Niching Methodology for the Many-Objective Pathfinding Problem., 2021,,.		1
39	Discrete Collective Estimation in Swarm Robotics with Ranked Voting Systems. , 2021, , .		4
40	Survey into predictive key performance indicator analysis from data mining perspective. , 2020, , .		4
41	Ant Colony Optimization based Multi-Robot Planner for Combined Task Allocation and Path Finding. , 2020, , .		4
42	On the Scalable Multi-Objective Multi-Agent Pathfinding Problem. , 2020, , .		19
43	A Novel Grid-based Crowding Distance for Multimodal Multi-objective Optimization. , 2020, , .		6
44	T-EA: A Traceable Evolutionary Algorithm. , 2020, , .		3
45	Generic Component-Based Mission-Centric Energy Model for Micro-Scale Unmanned Aerial Vehicles. Drones, 2020, 4, 63.	4.9	6
46	Particle Swarm Contour Search Algorithm. Entropy, 2020, 22, 407.	2.2	4
47	How cognitive and environmental constraints influence the reliability of simulated animats in groups. PLoS ONE, 2020, 15, e0228879.	2.5	3
48	Collective Decision Making in Swarm Robotics with Distributed Bayesian Hypothesis Testing. Lecture Notes in Computer Science, 2020, , 55-67.	1.3	11
49	A many-objective route planning benchmark problem for navigation. , 2020, , .		3
50	Impact of Communication Topology on PSO-based Swarms in Vector Fields. , 2020, , .		0
51	Multi-Objective Task Allocation for Wireless Sensor Networks. , 2020, , .		10
52	Modeling Pathfinding for Swarm Robotics. Lecture Notes in Computer Science, 2020, , 190-202.	1.3	6
53	Multi-objective collective search and movement-based metrics in swarm robotics. , 2019, , .		6
54	Modified crowding distance and mutation for multimodal multi-objective optimization. , 2019, , .		8

#	Article	IF	CITATIONS
55	Performance of dynamic algorithms on the dynamic distance minimization problem. , 2019, , .		2
56	Graph-based multi-objective generation of customised wiring harnesses. , 2019, , .		3
57	Positive impact of isomorphic changes in the environment on collective decision-making. , 2019, , .		3
58	Linear Search Mechanism for Multi- and Many-Objective Optimisation. Lecture Notes in Computer Science, 2019, , 399-410.	1.3	13
59	Evolving Game State Evaluation Functions for a Hybrid Planning Approach. , 2019, , .		3
60	Building a Planner: A Survey of Planning Systems Used in Commercial Video Games. IEEE Transactions on Games, 2019, 11, 91-108.	1.4	7
61	Benchmarking Collective Perception: New Task Difficulty Metrics for Collective Decision-Making. Lecture Notes in Computer Science, 2019, , 699-711.	1.3	14
62	Ising Model as a Switch Voting Mechanism in Collective Perception. Lecture Notes in Computer Science, 2019, , 617-629.	1.3	4
63	Online Optimization of Movement Cost for Robotic Applications of PSO. Lecture Notes in Computer Science, 2019, , 307-318.	1.3	1
64	A Framework for Large-Scale Multiobjective Optimization Based on Problem Transformation. IEEE Transactions on Evolutionary Computation, 2018, 22, 260-275.	10.0	205
65	A Robot Localization Framework Using CNNs for Object Detection and Pose Estimation. , 2018, , .		3
66	A Survey on Graph-based Systems in Manufacturing Processes. , 2018, , .		16
67	Simultaneous Localisation and Optimisation for Swarm Robotics. , 2018, , .		2
68	Understanding Collective Decision-Making in Natural Swarms. , 2018, , .		1
69	Multi-objective distance minimization problems – applications in technical systems. Automatisierungstechnik, 2018, 66, 964-974.	0.8	3
70	Investigation of a Simple Distance Based Ranking Metric for Decomposition-Based Multi/Many-Objective Evolutionary Algorithms. Lecture Notes in Computer Science, 2018, , 384-396.	1.3	1
71	Vector Field Benchmark for Collective Search in Unknown Dynamic Environments. Lecture Notes in Computer Science, 2018, , 411-419.	1.3	2
72	Transfer strategies from single- to multi-objective grouping mechanisms. , 2018, , .		10

#	Article	IF	Citations
73	How swarm size during evolution impacts the behavior, generalizability, and brain complexity of animats performing a spatial navigation task. , 2018 , , .		6
74	Evolving PSO algorithm design in vector fields using geometric semantic GP., 2018, , .		5
75	PSO-Based Search Rules for Aerial Swarms Against Unexplored Vector Fields via Genetic Programming. Lecture Notes in Computer Science, 2018, , 41-53.	1.3	2
76	Multiobjective optimization for interwoven systems. Journal of Multi-Criteria Decision Analysis, 2017, 24, 71-81.	1.9	17
77	PSO-based Search mechanism in dynamic environments: Swarms in Vector Fields. , 2017, , .		7
78	Dynamic Distance Minimization Problems for dynamic multi-objective optimization., 2017,,.		6
79	Elitism and aggregation methods in partial redundant evolutionary swarms solving a multi-objective tasks. , 2017, , .		0
80	A knee point based evolutionary multi-objective optimization for mission planning problems. , 2017, , .		21
81	HTN fighter: Planning in a highly-dynamic game. , 2017, , .		9
82	Comparison study of large-scale optimisation techniques on the LSMOP benchmark functions. , 2017, , .		16
83	Energy-saving decision making for aerial swarms: PSO-based navigation in vector fields. , 2017, , .		9
84	Solving the Bi-objective Traveling Thief Problem with Multi-objective Evolutionary Algorithms. Lecture Notes in Computer Science, 2017, , 46-60.	1.3	19
85	Heterogeneous Evolutionary Swarms with Partial Redundancy Solving Multi-objective Tasks. Lecture Notes in Computer Science, 2017, , 453-468.	1.3	1
86	Energy Aware Particle Swarm Optimization as search mechanism for aerial micro-robots., 2016,,.		9
87	Influence of dynamic environments on agent strategies. , 2016, , .		1
88	Mutation operators based on variable grouping for multi-objective large-scale optimization. , 2016, , .		25
89	Multi-objective tree search approaches for general video game playing. , 2016, , .		9
90	Multi-objective fitness-proportional attraction approach with weights., 2016,,.		0

#	Article	IF	CITATIONS
91	Functional brain network extraction using a genetic algorithm with a kick-out method., 2016,,.		1
92	Computational Swarm Intelligence. Texts in Computer Science, 2016, , 299-325.	0.7	4
93	Weighted Optimization Framework for Large-scale Multi-objective Optimization. , 2016, , .		22
94	Computational Intelligence. Texts in Computer Science, 2016, , .	0.7	44
95	The Influence of Heredity Models on Adaptability in Evolutionary Swarms. , 2016, , .		2
96	Properties of scalable distance minimization problems using the Manhattan metric., 2015,,.		8
97	Procedural level generation with answer set programming for general Video Game playing. , 2015, , .		13
98	Using $\hat{l}\mu\text{-Dominance}$ for Hidden and Degenerated Pareto-Fronts. , 2015, , .		2
99	Confidence measure: A novel metric for robust meta-heuristic optimisation algorithms. Information Sciences, 2015, 317, 114-142.	6.9	31
100	Open Loop Search for General Video Game Playing. , 2015, , .		35
101	Multiobjective Monte Carlo Tree Search for Real-Time Games. IEEE Transactions on Games, 2015, 7, 347-360.	1.4	18
102	Self-organised swarm display. International Journal of Swarm Intelligence, 2014, 1, 246.	0.3	0
103	A review of hybrid evolutionary multiple criteria decision making methods. , 2014, , .		79
104	Archive Based Multi-swarm Algorithm for Many-Objective Problems. , 2014, , .		3
105	Hop count based distance estimation in mobile ad hoc networks – Challenges and consequences. Ad Hoc Networks, 2014, 15, 39-52.	5.5	15
106	Preface: nature inspired solutions for high performance computing. Natural Computing, 2013, 12, 27-28.	3.0	0
107	Iterated multi-swarm., 2013,,.		8
108	Experimental Analysis of Bound Handling Techniques in Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation, 2013, 17, 259-271.	10.0	127

#	Article	IF	Citations
109	Distributed swarm evacuation planning. , 2013, , .		2
110	A Study of Mobility in Ad Hoc Networks and Its Effects on a Hop Count Based Distance Estimation. , 2012, , .		6
111	Adaptive Range Parameter Control. , 2012, , .		12
112	Validating a Peer-to-Peer Evolutionary Algorithm. Lecture Notes in Computer Science, 2012, , 436-445.	1.3	5
113	Distributed Geometric Distance Estimation in Ad Hoc Networks. Lecture Notes in Computer Science, 2012, , 28-41.	1.3	8
114	Self-organized invasive parallel optimization. , 2011, , .		2
115	Self-organized Invasive Parallel Optimization with Self-repairing Mechanism. PARS Parallel-Algorithmen -Rechnerstrukturen Und -Systemsoftware, 2011, 28, 90-99.	0.2	0
116	The automotive deployment problem: A practical application for constrained multiobjective evolutionary optimisation. , 2010, , .		16
117	Organic computing in off-highway machines. , 2010, , .		3
118	Interactive multi-objective particle swarm optimization with heatmap-visualization-based user interface. Engineering Optimization, 2010, 42, 119-139.	2.6	23
119	Parallel Multi-objective Optimization Using Self-organized Heterogeneous Resources. Studies in Computational Intelligence, 2010, , 165-179.	0.9	5
120	Preference-Based Multi-Objective Particle Swarm Optimization Using Desirabilities., 2010, , 101-110.		4
121	Intelligent Business Process Execution using Particle Swarm Optimization. , 2010, , 797-815.		5
122	Empirical comparison of MOPSO methods - Guide selection and diversity preservation , 2009, , .		48
123	Dynamic search initialisation strategies for multi-objective optimisation in peer-to-peer networks., 2009,,.		9
124	Decentralized evolution of robotic behavior using finite state machines. International Journal of Intelligent Computing and Cybernetics, 2009, 2, 695-723.	2.7	35
125	Asynchronous Multi-Objective Optimisation in Unreliable Distributed Environments. Studies in Computational Intelligence, 2009, , 51-78.	0.9	22
126	Self-organized Parallel Cooperation for Solving Optimization Problems. Lecture Notes in Computer Science, 2009, , 135-145.	1.3	1

#	Article	IF	CITATIONS
127	Hybridizing evolutionary strategies with continuation methods for solving multi-objective problems. Engineering Optimization, 2008, 40, 383-402.	2.6	40
128	Parallel multi-objective optimization using Master-Slave model on heterogeneous resources., 2008,,.		22
129	Asynchronous multiple objective particle swarm optimisation in unreliable distributed environments. , 2008, , .		14
130	Distance Based Ranking in Many-Objective Particle Swarm Optimization. Lecture Notes in Computer Science, 2008, , 753-762.	1.3	26
131	Parallel Approaches for Multiobjective Optimization. Lecture Notes in Computer Science, 2008, , 349-372.	1.3	57
132	Design of Gate Array Circuits Using Evolutionary Algorithms. , 2008, , 38-50.		0
133	Multi-objective particle swarm optimization on computer grids. , 2007, , .		51
134	Heatmap Visualization of Population Based Multi Objective Algorithms., 2007,, 361-375.		91
135	Hybrid Particle Guide Selection Methods in Multi-Objective Particle Swarm Optimization., 2006,,.		5
136	About Selecting the Personal Best in Multi-Objective Particle Swarm Optimization. Lecture Notes in Computer Science, 2006, , 523-532.	1.3	49
137	Covering Pareto Sets by Multilevel Evolutionary Subdivision Techniques. Lecture Notes in Computer Science, 2003, , 118-132.	1.3	41
138	Comparison of data structures for storing Pareto-sets in MOEAs., 0,,.		16
139	Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO)., 0,,.		355
140	The role of e-dominance in multi objective particle swarm optimization methods. , 0, , .		55
141	Covering Pareto-optimal fronts by subswarms in multi-objective particle swarm optimization. , 0, , .		56
142	Molecular force field parametrization using multi-objective evolutionary algorithms. , 0, , .		7
143	Bilevel Optimization of Multi-Component Chemical Systems Using Particle Swarm Optimization. , 0, , .		21
144	Intelligent Business Process Execution using Particle Swarm Optimization., 0,, 49-66.		3

ARTICLE IF CITATIONS

145 Evolutionary Population Dynamics and Multi-Objective Optimisation Problems., 0,, 185-206.

15