
Jeffra K Schaefer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7141382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nature Geoscience, 2009, 2, 123-126.	12.9	276
2	Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proceedings of the United States of America, 2011, 108, 8714-8719.	7.1	245
3	Role of the Bacterial Organomercury Lyase (MerB) in Controlling Methylmercury Accumulation in Mercury-Contaminated Natural Waters. Environmental Science & Technology, 2004, 38, 4304-4311.	10.0	178
4	Metal and radionuclide bioremediation: issues, considerations and potentials. Current Opinion in Microbiology, 2001, 4, 318-323.	5.1	173
5	Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California. Geochimica Et Cosmochimica Acta, 2000, 64, 3073-3084.	3.9	147
6	<i>Geobacteraceae</i> are important members of mercury-methylating microbial communities of sediments impacted by waste water releases. ISME Journal, 2018, 12, 802-812.	9.8	96
7	Detection of a key <scp>Hg</scp> methylation gene, <scp><i>hgcA</i></scp> , in wetland soils. Environmental Microbiology Reports, 2014, 6, 441-447.	2.4	89
8	Terrestrial discharges mediate trophic shifts and enhance methylmercury accumulation in estuarine biota. Science Advances, 2017, 3, e1601239.	10.3	88
9	Fractionation of Mercury Stable Isotopes during Microbial Methylmercury Production by Iron- and Sulfate-Reducing Bacteria. Environmental Science & Technology, 2016, 50, 8077-8083.	10.0	87
10	Effect of Divalent Metals on Hg(II) Uptake and Methylation by Bacteria. Environmental Science & Technology, 2014, 48, 3007-3013.	10.0	79
11	Leisingera methylohalidivorans gen. nov., sp. nov., a marine methylotroph that grows on methyl bromide International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 851-859.	1.7	72
12	Mercury methylation in oxygen deficient zones of the oceans: No evidence for the predominance of anaerobes. Marine Chemistry, 2010, 122, 11-19.	2.3	66
13	mer -Mediated Resistance and Volatilization of Hg(II) Under Anaerobic Conditions. Geomicrobiology Journal, 2002, 19, 87-102.	2.0	62
14	Analysis of mercuric reductase (merA) gene diversity in an anaerobic mercury-contaminated sediment enrichment. Environmental Microbiology, 2006, 8, 1746-1752.	3.8	55
15	Mercury methylating microbial communities of boreal forest soils. Scientific Reports, 2019, 9, 518.	3.3	53
16	Methanogens and Iron-Reducing Bacteria: the Overlooked Members of Mercury-Methylating Microbial Communities in Boreal Lakes. Applied and Environmental Microbiology, 2018, 84, .	3.1	46
17	Microbial Biosynthesis of Thiol Compounds: Implications for Speciation, Cellular Uptake, and Methylation of Hg(II). Environmental Science & Technology, 2019, 53, 8187-8196.	10.0	41
18	Effect of Thiols, Zinc, and Redox Conditions on Hg Uptake in <i>Shewanella oneidensis</i> . Environmental Science & Technology, 2015, 49, 7432-7438.	10.0	39

JEFFRA K SCHAEFER

#	Article	IF	CITATIONS
19	Oxidation of Methyl Halides by the Facultative Methylotroph Strain IMB-1. Applied and Environmental Microbiology, 1999, 65, 5035-5041.	3.1	38
20	Mechanisms of Methyl Mercury Net Degradation in Alder Swamps: The Role of Methanogens and Abiotic Processes. Environmental Science and Technology Letters, 2018, 5, 220-225.	8.7	34
21	Geochemical Factors Controlling Dissolved Elemental Mercury and Methylmercury Formation in Alaskan Wetlands of Varying Trophic Status. Environmental Science & Technology, 2019, 53, 6203-6213.	10.0	30
22	Mercury Speciation, Reactivity, and Bioavailability in a Highly Contaminated Estuary, Berry's Creek, New Jersey Meadowlands. Environmental Science & Technology, 2007, 41, 8268-8274.	10.0	29
23	Anaerobic guilds responsible for mercury methylation in boreal wetlands of varied trophic status serving as either a methylmercury source or sink. Environmental Microbiology, 2020, 22, 3685-3699.	3.8	23
24	The role of oxygen in stimulating methane production in wetlands. Global Change Biology, 2021, 27, 5831-5847.	9.5	23
25	Intracellular Hg(0) Oxidation in <i>Desulfovibrio desulfuricans</i> ND132. Environmental Science & Technology, 2016, 50, 11049-11056.	10.0	20
26	Tracing the Uptake of Hg(II) in an Iron-Reducing Bacterium Using Mercury Stable Isotopes. Environmental Science and Technology Letters, 2020, 7, 573-578.	8.7	15
27	Nutrient Inputs Stimulate Mercury Methylation by Syntrophs in a Subarctic Peatland. Frontiers in Microbiology, 2021, 12, 741523.	3.5	14
28	Production of methylmercury by methanogens in mercury contaminated estuarine sediments. FEMS Microbiology Letters, 2020, 367, .	1.8	11
29	Better living through mercury. Nature Geoscience, 2016, 9, 94-95.	12.9	4
30	Adsorption of Methylmercury onto <i>Geobacter bemidijensis</i> Bem. Environmental Science & Technology, 2018, 52, 11564-11572.	10.0	4
31	Extracellular sulfite is protective against reactive oxygen species and antibiotic stress in <i>Shewanella oneidensis</i> MRâ€1. Environmental Microbiology Reports, 2021, 13, 394-400.	2.4	2