
Bechir Hamrouni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7141220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization and physicochemical aspects of novel cellulose-based layered double hydroxide nanocomposite for removal of antimony and fluoride from aqueous solution. Journal of Environmental Sciences, 2021, 102, 301-315.	3.2	25
2	Date Palm Fiber as a novel precursor for porous activated carbon: Optimization, characterization and its application as Tylosin antibiotic scavenger from aqueous solution. Surfaces and Interfaces, 2021, 24, 101047.	1.5	25
3	Modelling and optimization of hexavalent chromium removal from aqueous solution by adsorption on low-cost agricultural waste biomass using response surface methodological approach. Water Science and Technology, 2021, 84, 552-575.	1.2	21
4	Response surface methodology for dyes removal by adsorption onto alginate calcium. Environmental Technology (United Kingdom), 2020, 41, 3473-3482.	1.2	14
5	An economic and sensitive method for extracting chromium speciation in airborne inhalable dust, using a green sample treatment coupled with electrothermal atomic absorption. Separation Science and Technology, 2020, 55, 2772-2778.	1.3	5
6	Copper(II) Removal from Synthetic Wastewater Solutions Using Supported Liquid Membrane and Polymer Inclusion Membrane. Journal of Environmental Engineering, ASCE, 2020, 146, .	0.7	14
7	Boron removal from water by adsorption onto activated carbon prepared from palm bark: kinetic, isotherms, optimisation and breakthrough curves modeling. Water Science and Technology, 2020, 81, 321-332.	1.2	20
8	Synthesis of novel adsorbent by intercalation of biopolymer in LDH for the removal of arsenic from synthetic and natural water. Journal of Environmental Sciences, 2020, 91, 246-261.	3.2	52
9	Optimization of boron removal from water by electrodialysis using response surface methodology. Water Science and Technology, 2020, 81, 293-300.	1.2	10
10	Removal of phosphate by Donnan dialysis coupled with adsorption onto calcium alginate beads. Water Science and Technology, 2019, 80, 117-125.	1.2	10
11	Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent. Chemometrics and Intelligent Laboratory Systems, 2019, 189, 18-26.	1.8	85
12	Intensification of light green SF yellowish (LGSFY) photodegradion in water by iodate ions: Iodine radicals implication in the degradation process and impacts of water matrix components. Science of the Total Environment, 2019, 652, 1219-1227.	3.9	18
13	Factorial experimental design applied to adsorption of cadmium on activated alumina. Journal of Water Reuse and Desalination, 2018, 8, 76-85.	1.2	11
14	Modelling of the limiting current density of an electrodialysis process by response surface methodology. Ionics, 2018, 24, 617-628.	1.2	16
15	Treatment of heavy metal polluted industrial wastewater by a new water treatment process: ballasted electroflocculation. Journal of Hazardous Materials, 2018, 344, 968-980.	6.5	38
16	Physicochemical characterization of a polymeric conductor: application to defluoridation of industrial effluent by electrodialysis. Turkish Journal of Chemistry, 2018, 42, 121-131.	0.5	3
17	Determination of Chromium (VI) in Airborne Particulate Matter by Electrothermal Atomic Absorption Spectrometry. Analytical Letters, 2017, 50, 2012-2022.	1.0	7
18	Understanding of phenolic compound retention mechanisms on PES-UF membrane. Turkish Journal of Chemistry, 2017, 41, 813-825.	0.5	1

BECHIR HAMROUNI

#	Article	IF	CITATIONS
19	Hexavalent Chromium Removal from Model Water and Car Shock Absorber Factory Effluent by Nanofiltration and Reverse Osmosis Membrane. International Journal of Analytical Chemistry, 2017, 2017, 1-10.	0.4	54
20	Comparison of adsorption models for the removal of fluorides, nitrates and sulfates by adsorption onto AFN membrane. Water Quality Research Journal of Canada, 2016, 51, 106-116.	1.2	1
21	Effect of ionic strength on the ion exchange equilibrium between AMX membrane and electrolyte solutions. Water Quality Research Journal of Canada, 2016, 51, 60-68.	1.2	8
22	Boron removal from brackish water by reverse osmosis and nanofiltration membranes: application of Spiegler–Kedem model and optimization. Water Science and Technology: Water Supply, 2016, 16, 684-694.	1.0	10
23	Application of response surface methodology and artificial neural network: modeling and optimization of Cr(VI) adsorption process using Dowex 1X8 anion exchange resin. Water Science and Technology, 2016, 73, 2402-2412.	1.2	8
24	Modification of the AMX membrane surface by polyethyleneimine: Effect of ionic strength on the membrane ion exchange selectivity. Canadian Journal of Chemical Engineering, 2016, 94, 2386-2393.	0.9	2
25	Application of Response Surface Methodology to Optimize Nitrate Removal from Water by Electrodialysis. Chemistry Letters, 2016, 45, 1369-1372.	0.7	9
26	Highly Cost-Effective and Reuse-Oriented Treatment of Cadmium-Polluted Mining Wastewater by Electrocoagulation Process. Journal of Environmental Engineering, ASCE, 2016, 142, 04016061.	0.7	4
27	Competitive adsorption of fluoride and natural organic matter onto activated alumina. Environmental Technology (United Kingdom), 2016, 37, 2326-2336.	1.2	14
28	Use of Electrocoagulation with Aluminum Electrodes to Reduce Hardness in Tunisian Phosphate Mining Process Water. Mine Water and the Environment, 2016, 35, 310-317.	0.9	12
29	Optimization studies for water defluoridation by adsorption: application of a design of experiments. Desalination and Water Treatment, 2016, 57, 9889-9899.	1.0	13
30	Development of a predictive model of the limiting current density of an electrodialysis process using response surface methodology. Membrane Water Treatment, 2016, 7, 127-141.	0.5	7
31	Boron removal from model water by RO and NF membranes characterized using S-K model. Membrane Water Treatment, 2016, 7, 193-207.	0.5	2
32	Temperature effect on ion exchange equilibrium between CMX membrane and electrolytes solutions. Journal of Water Reuse and Desalination, 2015, 5, 535-541.	1.2	15
33	Study of the influence of operating parameters on boron removal by a reverse osmosis membrane. Desalination and Water Treatment, 2015, 56, 2653-2662.	1.0	12
34	Removal of zinc ions from synthetic and industrial Tunisian wastewater by electrocoagulation using aluminum electrodes. Desalination and Water Treatment, 2015, 56, 2689-2698.	1.0	13
35	Phenol removal from water by AG reverse osmosis membrane. Environmental Progress and Sustainable Energy, 2015, 34, 982-989.	1.3	28
36	Optimization of the electrocoagulation process for the removal of lead from water using aluminium as electrode material. Desalination and Water Treatment, 2015, 56, 2672-2681.	1.0	23

BECHIR HAMROUNI

#	Article	IF	CITATIONS
37	Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes. Water Science and Technology, 2015, 72, 1206.	1.2	49
38	Optimization of electrocoagulation operating parameters and reactor design for zinc removal: application to industrial Tunisian wastewater. Desalination and Water Treatment, 2015, 56, 2706-2714.	1.0	6
39	Influence of operating conditions on the retention of phenol in water by reverse osmosis SG membrane characterized using Speigler–Kedem model. Desalination and Water Treatment, 2014, 52, 1792-1803.	1.0	7
40	Performance of Reverse Osmosis and Nanofiltration in the Removal of Fluoride from Model Water and Metal Packaging Industrial Effluent. Separation Science and Technology, 2014, 49, 1135-1145.	1.3	72
41	Application of Adsorption Models for Fluoride, Nitrate and Sulfate Removal by AMX Membrane. International Journal of Technology, 2014, 5, 60.	0.4	4
42	Electrodialytic Removal of Cadmium from Brackish Water: Effects of Operating Parameters. Journal of Membrane and Separation Technology, 2014, 3, 67-77.	0.4	3
43	Study of the ion exchange equilibrium of Clâ^', \$\$ NO_3^{ - } \$\$, and \$\$ SO_4^{{2 - }} \$\$ ions on the AMX membrane. Ionics, 2013, 19, 329-334.	1.2	3
44	Iron removal from brackish water by electrodialysis. Environmental Technology (United Kingdom), 2013, 34, 2521-2529.	1.2	17
45	Modification of the AMX membrane surface: Temperature dependence of anion exchange equilibrium. Canadian Journal of Chemical Engineering, 2013, 91, 1465-1473.	0.9	7
46	Application of Donnan Dialysis Coupled to Adsorption onto Activated Alumina for Chromium (VI) Removal. American Journal of Analytical Chemistry, 2013, 04, 420-425.	0.3	11
47	Boron Removal by Electrocoagulation Using Full Factorial Design. Journal of Water Resource and Protection, 2013, 05, 867-875.	0.3	20
48	Ion Exchange Equilibrium between DOWEX 1X8 Resin Modified by Polyethyleneimine and Electrolyte Solutions. Journal of Water Resource and Protection, 2013, 05, 1059-1065.	0.3	3
49	Adsorption of Chromium onto Activated Alumina: Kinetics and Thermodynamics Studies. Water Environment Research, 2013, 85, 99-104.	1.3	6
50	Optimization of Chromium (Vi) Removal by Donnan Dialysis. American Journal of Analytical Chemistry, 2013, 04, 306-313.	0.3	13
51	Adsorption of F ⁻ , NO ₃ ⁻ and SO ₄ ²⁻ on AFN Anionic Membrane: Kinetics and Thermodynamics Studies. American Journal of Analytical Chemistry, 2013, 04, 501-509.	0.3	6
52	Selectivity of anion exchange membrane modified with polyethyleneimine. Ionics, 2012, 18, 711-717.	1.2	27
53	Removal of chromium by adsorption on activated alumina. Desalination and Water Treatment, 2011, 26, 279-286.	1.0	24
54	Influence of operating conditions on the retention of fluoride from water by nanofiltration. Desalination and Water Treatment, 2011, 29, 39-46.	1.0	16

BECHIR HAMROUNI

#	Article	IF	CITATIONS
55	Effect of some physical and chemical parameters on fluoride removal by nanofiltration. Ionics, 2010, 16, 245-253.	1.2	25
56	Electrodialytic desalination of brackish water: effect of process parameters and water characteristics. Ionics, 2010, 16, 621-629.	1.2	31
57	Electrodialytic Defluoridation of Brackish Water: Effect of Process Parameters and Water Characteristics. Clean - Soil, Air, Water, 2010, 38, 623-629.	0.7	12
58	Effect of temperature on ion exchange equilibrium between AMX membrane and binary systems of Cl ^{â^'} , NO ^{â^'} ₃ and SO ^{2â^'} ₄ ions. Desalination and Water Treatment, 2010, 23, 32-38.	1.0	20
59	Effect of ionic strength on ion exchange equilibrium between cationic membranes and K ⁺ /Na ⁺ , K ⁺ /Li ⁺ and Na ⁺ /Li ⁺ binary systems. Desalination and Water Treatment, 2010, 22, 265-270.	1.0	2
60	Equilibrium and Kinetic Studies of Adsorption of Boron on Activated Alumina. Water Environment Research, 2009, 81, 2455-2459.	1.3	7
61	Determination of the selectivity coefficient of the CMX cationic membrane at various ionic strengths. Desalination and Water Treatment, 2009, 10, 47-52.	1.0	14
62	Ion exchange equilibrium between cation exchange membranes and aqueous solutions of K+/Na+, K+/Ca2+, and Na+/Ca2+. Ionics, 2009, 15, 445-451.	1.2	6
63	Boron removal by membrane processes. Desalination and Water Treatment, 2009, 5, 119-123.	1.0	8
64	Equilibrium and kinetic studies of adsorption of boron on activated alumina. Water Environment Research, 2009, 81, 2455-9.	1.3	1
65	Ion exchange equilibrium between ion exchange membrane and electrolyte solutions. Desalination, 2008, 221, 448-454.	4.0	7
66	Boron removal by adsorption onto activated alumina and by reverse osmosis. Desalination, 2008, 223, 31-37.	4.0	73
67	RO membrane autopsy of Zarzis brackish water desalination plant. Desalination, 2008, 220, 258-266.	4.0	59
68	Equilibrium and kinetic studies of adsorption of silica onto activated alumina. Desalination, 2007, 206, 141-146.	4.0	64
69	Coupling of membrane processes for brackish water desalination. Desalination, 2007, 203, 331-336.	4.0	36
70	Small scale desalination pilots powered by renewable energy sources: case studies. Desalination, 2005, 183, 151-165.	4.0	106
71	Operating analysis of a direct energy coupled desalination family prototype. Desalination, 2004, 168, 95-100.	4.0	10
72	Silica removal using ion-exchange resins. Desalination, 2004, 167, 273-279.	4.0	44

#	Article	IF	CITATIONS
73	Calco-carbonic equilibrium calculation. Desalination, 2003, 152, 167-174.	4.0	9
74	Analytical aspects of silica in saline water — application to desalination of brackish waters. Desalination, 2001, 136, 225-232.	4.0	43
75	Thermodynamic description of saline waters — Prediction of scaling limits in desalination processes. Desalination, 2001, 137, 275-284.	4.0	30
76	Combining adsorption on activated carbon with electrocoagulation process for copper removal from used water. , 0, 83, 212-221.		2
77	Adsorption of cadmium onto activated alumina: kinetics and thermodynamics studies. , 0, 83, 233-243.		Ο
78	Effect of temperature on the adsorption of fluorides, nitrates and sulfates onto modified AFN membrane. , 0, 83, 204-211.		0