Holger Frey

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7141158/holger-frey-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 409
 18,072
 66
 117

 papers
 citations
 h-index
 g-index

 428
 19,282
 5.6
 6.91

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
409	Ordering kinetics of a tapered copolymer based on isoprene and styrene <i>Journal of Chemical Physics</i> , 2022 , 156, 134904	3.9	1
408	Dynamics of Poly(cyclohexene carbonate) as a Function of Molar Mass. <i>ACS Applied Polymer Materials</i> , 2022 , 4, 3833-3843	4.3	0
407	Rational Design of Tapered Multiblock Copolymers for Thermoplastic Elastomers. <i>Progress in Polymer Science</i> , 2021 , 124, 101488	29.6	9
406	Anionic Polymerization of Terpene Monomers: New Options for Bio-Based Thermoplastic Elastomers. <i>Macromolecules</i> , 2021 , 54, 7323-7336	5.5	6
405	Temperature Variation Enables the Design of Biobased Block Copolymers via One-Step Anionic Copolymerization. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2000513	4.8	5
404	The Unique Versatility of the Double Metal Cyanide (DMC) Catalyst: Introducing Siloxane Segments to Polypropylene Oxide by Ring-Opening Copolymerization. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2000542	4.8	4
403	Building Bridges by Blending: Morphology and Mechanical Properties of Binary Tapered Diblock/Multiblock Copolymer Blends. <i>Macromolecular Chemistry and Physics</i> , 2021 , 222, 2000373	2.6	4
402	The effect of THF and the chelating modifier DTHFP on the copolymerisation of Emyrcene and styrene: kinetics, microstructures, morphologies, and mechanical properties. <i>Polymer Chemistry</i> , 2021 , 12, 4632-4642	4.9	2
401	N-Oxide Polyethers as Kinetic Hydrate Inhibitors: Side Chain Ring Size Makes the Difference. <i>Energy & Energy Enels</i> , 2021 , 35, 4067-4074	4.1	7
400	Unexpected Random Copolymerization of Propylene Oxide with Glycidyl Methyl Ether via Double Metal Cyanide Catalysis: Introducing Polarity in Polypropylene Oxide. <i>Macromolecules</i> , 2021 , 54, 11228-	-1512237	2
399	Tapered Multiblock Star Copolymers: Synthesis, Selective Hydrogenation, and Properties. <i>Macromolecules</i> , 2020 , 53, 4422-4434	5.5	8
398	Water-soluble hyperbranched polyglycerol photosensitizer for enhanced photodynamic therapy. <i>Polymer Chemistry</i> , 2020 , 11, 3913-3921	4.9	2
397	Targeting of Immune Cells with Trimannosylated Liposomes. <i>Advanced Therapeutics</i> , 2020 , 3, 1900185	4.9	5
396	Hydroxamic Acid: An Underrated Moiety? Marrying Bioinorganic Chemistry and Polymer Science. <i>Biomacromolecules</i> , 2020 , 21, 2546-2556	6.9	10
395	Long-Chain Alkyl Epoxides and Glycidyl Ethers: An Underrated Class of Monomers. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e2000225	4.8	5
394	Tetrahydrofuran: More than a Randomizerlin the Living Anionic Copolymerization of Styrene and Isoprene: Kinetics, Microstructures, Morphologies, and Mechanical Properties. <i>Macromolecules</i> , 2020 , 53, 5512-5527	5.5	13
393	"Dumb" pH-Independent and Biocompatible Hydrogels Formed by Copolymers of Long-Chain Alkyl Glycidyl Ethers and Ethylene Oxide. <i>Biomacromolecules</i> , 2020 , 21, 3152-3162	6.9	4

(2020-2020)

392	Synthesis and Solution Processing of Nylon-5 Ferroelectric Thin Films: The Renaissance of Odd-Nylons?. <i>Macromolecular Chemistry and Physics</i> , 2020 , 221, 1900468	2.6	8
391	A Nonconventional Approach toward Multihydroxy Functional Polystyrenes Relying on a Simple Grignard Reagent. <i>Macromolecules</i> , 2020 , 53, 3370-3379	5.5	1
390	Ester Functional Epoxide Monomers for Random and Gradient Poly(ethylene glycol) Polyelectrolytes with Multiple Carboxylic Acid Moieties. <i>Macromolecules</i> , 2020 , 53, 3524-3534	5.5	4
389	Tapered copolymers of styrene and 4-vinylbenzocyclobutene via carbanionic polymerization for crosslinkable polymer films. <i>Journal of Polymer Science</i> , 2020 , 58, 181-192	2.4	
388	Amino-functional polyethers: versatile, stimuli-responsive polymers. <i>Polymer Chemistry</i> , 2020 , 11, 3940-	-3 <u>9</u> 50	11
387	pH-Responsive protein nanoparticles via conjugation of degradable PEG to the surface of cytochrome c. <i>Polymer Chemistry</i> , 2020 , 11, 551-559	4.9	7
386	Acid-Cleavable Poly(ethylene glycol) Hydrogels Displaying Protein Release at pH 5. <i>Chemistry - A European Journal</i> , 2020 , 26, 2947-2953	4.8	2
385	Hyperbranched polymer architectures: From Flory's AB(f-1) polycondensates to controlled structures. <i>Polymer</i> , 2020 , 211, 123113	3.9	4
384	Hard here Behavior of Boft Globular-like, Hyperbranched Polyglycerols Extensive Molecular Hydrodynamic and Light Scattering Studies. <i>Macromolecules</i> , 2020 , 53, 9220-9233	5.5	2
383	Stability of Alkyl Chain-Mediated Lipid Anchoring in Liposomal Membranes. <i>Cells</i> , 2020 , 9,	7.9	3
382	Myrcenol-Based Monomer for Carbanionic Polymerization: Functional Copolymers with Myrcene and Bio-Based Graft Copolymers. <i>Macromolecules</i> , 2020 , 53, 9008-9017	5.5	8
381	Tapered Multiblock Copolymers Based on Farnesene and Styrene: Impact of Biobased Polydiene Architectures on Material Properties. <i>Macromolecules</i> , 2020 , 53, 10397-10408	5.5	19
380	Efficiency Boosting of Surfactants with Poly(ethylene oxide)-Poly(alkyl glycidyl ether)s: A New Class of Amphiphilic Polymers. <i>Langmuir</i> , 2020 , 36, 9849-9866	4	O
379	The Next 100 Years of Polymer Science. <i>Macromolecular Chemistry and Physics</i> , 2020 , 221, 2000216	2.6	36
378	Tapered copolymers of styrene and 4-vinylbenzocyclobutene via carbanionic polymerization for crosslinkable polymer films. <i>Journal of Polymer Science</i> , 2020 , 58, 181-192	2.4	2
377	Multifunctional Fe(III)-Binding Polyethers from Hydroxamic Acid-Based Epoxide Monomers. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e1900282	4.8	7
376	Amine N-Oxide Kinetic Hydrate Inhibitor Polymers for High-Salinity Applications. <i>Energy & Energy & En</i>	4.1	10
375	Local and Subchain Relaxation of Polyisoprene in Multiblock Copolymers with a Tapered Interface. <i>Macromolecules</i> , 2020 , 53, 3042-3051	5.5	6

374	Towards bio-based tapered block copolymers: the behaviour of myrcene in the statistical anionic copolymerisation. <i>Polymer Chemistry</i> , 2019 , 10, 1213-1220	4.9	35
373	A general concept for the introduction of hydroxamic acids into polymers. <i>Chemical Science</i> , 2019 , 10, 7009-7022	9.4	4
372	Surface Modification of Nanoparticles and Nanovesicles via Click-Chemistry. <i>Methods in Molecular Biology</i> , 2019 , 2000, 235-245	1.4	3
371	Effect of the Substituent Position on the Anionic Copolymerization of Styrene Derivatives: Experimental Results and Density Functional Theory Calculations. <i>Macromolecules</i> , 2019 , 52, 4545-4554	5.5	7
370	The poly(propylene oxide-co-ethylene oxide) gradient is controlled by the polymerization method: determination of reactivity ratios by direct comparison of different copolymerization models. <i>Polymer Chemistry</i> , 2019 , 10, 2863-2871	4.9	24
369	Nonionic Aliphatic Polycarbonate Diblock Copolymers Based on CO, 1,2-Butylene Oxide, and mPEG: Synthesis, Micellization, and Solubilization. <i>Langmuir</i> , 2019 , 35, 5221-5231	4	8
368	Phosphonylation Controls the Protein Corona of Multifunctional Polyglycerol-Modified Nanocarriers. <i>Macromolecular Bioscience</i> , 2019 , 19, e1800468	5.5	3
367	Aminal Protection of Epoxide Monomer Permits the Introduction of Multiple Secondary Amine Moieties at Poly(ethylene glycol). <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1900057	4.8	2
366	Tapered Multiblock Copolymers Based on Isoprene and 4-Methylstyrene: Influence of the Tapered Interface on the Self-Assembly and Thermomechanical Properties. <i>Macromolecules</i> , 2019 , 52, 1577-1588	₈ 5·5	33
365	Poly(ethylene glycol) with Multiple Aldehyde Functionalities Opens up a Rich and Versatile Post-Polymerization Chemistry. <i>Macromolecules</i> , 2019 , 52, 1785-1793	5.5	12
364	Rapid one-pot synthesis of tapered star copolymers via ultra-fast coupling of polystyryllithium chain ends. <i>Polymer Chemistry</i> , 2019 , 10, 1762-1768	4.9	4
363	Solution-processed transparent ferroelectric nylon thin films. <i>Science Advances</i> , 2019 , 5, eaav3489	14.3	25
362	Multi-olefin containing polyethers and triazolinediones: a powerful alliance. <i>Polymer Chemistry</i> , 2019 , 10, 4699-4708	4.9	7
361	Glycidyltosylat: Die Polymerisation eines flicht polymerisierbaren[Monomers erm@licht eine universelle, polymeranaloge Funktionalisierung von Polyethern. <i>Angewandte Chemie</i> , 2019 , 131, 13015	- 13 018	; 4
360	Glycidyl Tosylate: Polymerization of a "Non-Polymerizable" Monomer permits Universal Post-Functionalization of Polyethers. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12883-12886	16.4	8
359	Functionalization of Liposomes with Hydrophilic Polymers Results in Macrophage Uptake Independent of the Protein Corona. <i>Biomacromolecules</i> , 2019 , 20, 2989-2999	6.9	35
358	Monomer-activated Copolymerization of Ethylene Oxide and Epichlorohydrin: In Situ Kinetics Evidences Tapered Block Copolymer Formation. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2019 , 37, 912-918	3.5	7
357	Convenient Access to Amino-Hydroxyl Heterobifunctional PEG and PPO via a Sacrificial Hexahydro-Triazine Star Strategy. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1900020	4.8	3

(2017-2019)

356	Oxidation-responsive polyether block copolymers lead to non-ionic polymer surfactants with multiple amine N-oxides. <i>Polymer Chemistry</i> , 2019 , 10, 1569-1574	4.9	5	
355	Kinetics of Anionic Living Copolymerization of Isoprene and Styrene Using in Situ NIR Spectroscopy: Temperature Effects on Monomer Sequence and Morphology. <i>Macromolecules</i> , 2019 , 52, 9299-9310	5.5	15	
354	Copolymerization of Isoprene with p-Alkylstyrene Monomers: Disparate Reactivity Ratios and the Shape of the Gradient. <i>Macromolecules</i> , 2019 , 52, 796-806	5.5	18	
353	Comparison of Linear and Hyperbranched Polyether Lipids for Liposome Shielding by F-Radiolabeling and Positron Emission Tomography. <i>Biomacromolecules</i> , 2018 , 19, 2506-2516	6.9	11	
352	Functional Polycarbonates from Carbon Dioxide and Tailored Epoxide Monomers: Degradable Materials and Their Application Potential. <i>Advanced Functional Materials</i> , 2018 , 28, 1704302	15.6	82	
351	One-Step Block Copolymer Synthesis versus Sequential Monomer Addition: A Fundamental Study Reveals That One Methyl Group Makes a Difference. <i>Macromolecules</i> , 2018 , 51, 3527-3537	5.5	44	
350	Systematic Variation of the Degree of Branching (DB) of Polyglycerol via Oxyanionic Copolymerization of Glycidol with a Protected Glycidyl Ether and Its Impact on Rheological Properties. <i>Macromolecular Chemistry and Physics</i> , 2018 , 219, 1700376	2.6	7	
349	One-Step Anionic Copolymerization Enables Formation of Linear Ultrahigh-Molecular-Weight Block Copolymer Films Featuring Vivid Structural Colors in the Bulk State. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 18202-18212	9.5	31	
348	Iron Oxide Superparticles with Enhanced MRI Performance by Solution Phase Epitaxial Growth. <i>Chemistry of Materials</i> , 2018 , 30, 4277-4288	9.6	9	
347	Polymerization of long chain alkyl glycidyl ethers: a platform for micellar gels with tailor-made melting points. <i>Polymer Chemistry</i> , 2018 , 9, 5327-5338	4.9	9	
346	Isoprene/Styrene Tapered Multiblock Copolymers with up to Ten Blocks: Synthesis, Phase Behavior, Order, and Mechanical Properties. <i>Macromolecules</i> , 2018 , 51, 10246-10258	5.5	37	
345	Crystalline CO -Based Aliphatic Polycarbonates with Long Alkyl Chains. <i>Macromolecular Rapid Communications</i> , 2018 , 39, e1800558	4.8	2	
344	Particles of vaterite, a metastable CaCO polymorph, exhibit high biocompatibility for human osteoblasts and endothelial cells and may serve as a biomaterial for rapid bone regeneration. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2018 , 12, 1754-1768	4.4	9	
343	Anionic Copolymerization Enables the Scalable Synthesis of Alternating (AB)n Multiblock Copolymers with High Molecular Weight in n/2 Steps. <i>ACS Macro Letters</i> , 2018 , 7, 807-810	6.6	25	
342	Ilickable PEGIvia anionic copolymerization of ethylene oxide and glycidyl propargyl ether. <i>Polymer Chemistry</i> , 2017 , 8, 1882-1887	4.9	13	
341	Conducting Polymer with Orthogonal Catechol and Disulfide Anchor Groups for the Assembly of Inorganic Nanostructures. <i>Macromolecules</i> , 2017 , 50, 3779-3788	5.5	4	
340	Recent advances in the use of nanoparticles for allergen-specific immunotherapy. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2017 , 72, 1461-1474	9.3	38	
339	Synthesis of linear polyglycerols with tailored degree of methylation by copolymerization and the effect on thermorheological behavior. <i>Polymer</i> , 2017 , 121, 328-339	3.9	5	

338	Capitalizing on Protecting Groups to Influence Vinyl Catechol Monomer Reactivity and Monomer Gradient in Carbanionic Copolymerization. <i>Macromolecular Chemistry and Physics</i> , 2017 , 218, 1600553	2.6	10
337	Poly(Ethylene Glycol) Dimethacrylates with Cleavable Ketal Sites: Precursors for Cleavable PEG-Hydrogels. <i>Macromolecular Bioscience</i> , 2017 , 17, 1600532	5.5	9
336	Die lebende anionische Polymerisation. <i>Chemie in Unserer Zeit</i> , 2017 , 51, 254-263	0.2	1
335	[email[protected]2O3 Superparticles with Enhanced Peroxidase Activity by Solution Phase Epitaxial Growth. <i>Chemistry of Materials</i> , 2017 , 29, 1134-1146	9.6	49
334	Capillary Imbibition, Crystallization, and Local Dynamics of Hyperbranched Poly(ethylene oxide) Confined to Nanoporous Alumina. <i>Macromolecules</i> , 2017 , 50, 8755-8764	5.5	14
333	Multiarm Polycarbonate Star Polymers with a Hyperbranched Polyether Core from CO2 and Common Epoxides. <i>Macromolecules</i> , 2017 , 50, 6577-6585	5.5	12
332	Rigid Hyperbranched Polycarbonate Polyols from CO2 and Cyclohexene-Based Epoxides. <i>Macromolecules</i> , 2017 , 50, 6088-6097	5.5	14
331	Silver Oxide Mediated Monotosylation of Poly(ethylene glycol) (PEG): Heterobifunctional PEG via Polymer Desymmetrization. <i>Macromolecules</i> , 2017 , 50, 9196-9206	5.5	7
330	Well-Defined Multi-Amino-Functional and Stimuli-Responsive Poly(propylene oxide) by Crown Ether Assisted Anionic Ring-Opening Polymerization. <i>Macromolecules</i> , 2017 , 50, 8885-8893	5.5	31
329	Examples of xylochemistry: colorants and polymers. <i>Green Chemistry</i> , 2017 , 19, 3780-3786	10	17
328	Thioether-Bearing Hyperbranched Polyether Polyols with Methionine-Like Side-Chains: A Versatile Platform for Orthogonal Functionalization. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1600457	4.8	6
327	Acid-Labile Surfactants Based on Poly(ethylene glycol), Carbon Dioxide and Propylene Oxide: Miniemulsion Polymerization and Degradation Studies. <i>Polymers</i> , 2017 , 9,	4.5	6
326	Tunable dynamic hydrophobic attachment of guest molecules in amphiphilic core\hat{\mathbb{B}}hell polymers. <i>Polymer Chemistry</i> , 2016 , 7, 5783-5798	4.9	8
325	Living Polymer Chains with Predictable Molecular Weight and Dispersity via Carbanionic Polymerization in Continuous Flow: Mixing Rate as a Key Parameter. <i>Macromolecules</i> , 2016 , 49, 5043-50)50 ⁵	46
324	Orthogonal Click Conjugation to the Liposomal Surface Reveals the Stability of the Lipid Anchorage as Crucial for Targeting. <i>Chemistry - A European Journal</i> , 2016 , 22, 11578-82	4.8	18
323	Conventional Oxyanionic versus Monomer-Activated Anionic Copolymerization of Ethylene Oxide with Glycidyl Ethers: Striking Differences in Reactivity Ratios. <i>ACS Macro Letters</i> , 2016 , 5, 1206-1211	6.6	31
322	Can Hyperbranched Polymers Entangle? Effect of Hydrogen Bonding on Entanglement Transition and Thermorheological Properties of Hyperbranched Polyglycerol Melts. <i>Macromolecules</i> , 2016 , 49, 877	22-873	7 ²¹
321	Physicochemical and Preclinical Evaluation of Spermine-Derived Surfactant Liposomes for in Vitro and in Vivo siRNA-Delivery to Liver Macrophages. <i>Molecular Pharmaceutics</i> , 2016 , 13, 3636-3647	5.6	3

320	Intrinsic superoxide dismutase activity of MnO nanoparticles enhances the magnetic resonance imaging contrast. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 7423-7428	7.3	54
319	Wet Chemistry and Peptide Immobilization on Polytetrafluoroethylene for Improved Cell-adhesion. Journal of Visualized Experiments, 2016,	1.6	3
318	Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers: Degradable Poloxamer Analogs. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 775-80	4.8	14
317	Hierachical Ni@Fe2O3 superparticles through epitaxial growth of EFe2O3 nanorods on in situ formed Ni nanoplates. <i>Nanoscale</i> , 2016 , 8, 9548-55	7.7	18
316	Processing and adjusting the hydrophilicity of poly(oxymethylene) (co)polymers: nanoparticle preparation and film formation. <i>Polymer Chemistry</i> , 2016 , 7, 184-190	4.9	2
315	Catechol Acetonide Glycidyl Ether (CAGE): A Functional Epoxide Monomer for Linear and Hyperbranched Multi-Catechol Functional Polyether Architectures. <i>Macromolecules</i> , 2016 , 49, 1655-166	.5 ·5	37
314	Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. <i>Chemical Reviews</i> , 2016 , 116, 2170-243	68.1	406
313	Hyperbranched Polyols via Copolymerization of 1,2-Butylene Oxide and Glycidol: Comparison of Batch Synthesis and Slow Monomer Addition. <i>Macromolecules</i> , 2016 , 49, 38-47	5.5	23
312	Oxidation-Responsive and "Clickable" Poly(ethylene glycol) via Copolymerization of 2-(Methylthio)ethyl Glycidyl Ether. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9212-23	16.4	82
311	Anionic Polymerization of Vinylcatechol Derivatives: Reversal of the Monomer Gradient Directed by the Position of the Catechol Moiety in the Copolymerization with Styrene. <i>Macromolecules</i> , 2016 , 49, 4792-4801	5.5	29
310	Cleavable Polyethylene Glycol: 3,4-Epoxy-1-butene as a Comonomer to Establish Degradability at Physiologically Relevant pH. <i>ACS Macro Letters</i> , 2016 , 5, 1357-1363	6.6	10
309	Tailoring Novel PTFE Surface Properties: Promoting Cell Adhesion and Antifouling Properties via a Wet Chemical Approach. <i>Bioconjugate Chemistry</i> , 2016 , 27, 1216-21	6.3	24
308	Polyvinylferrocene-Based Amphiphilic Block Copolymers Featuring Functional Junction Points for Cross-Linked Micelles. <i>Macromolecules</i> , 2016 , 49, 3406-3414	5.5	24
307	Poly(THF-co-cyano ethylene oxide): Cyano Ethylene Oxide (CEO) Copolymerization with THF Leading to Multifunctional and Water-Soluble PolyTHF Polyelectrolytes. <i>Macromolecules</i> , 2016 , 49, 368	1 ⁵ 35695	; 3
306	Copolymerization Kinetics of Glycidol and Ethylene Oxide, Propylene Oxide, and 1,2-Butylene Oxide: From Hyperbranched to Multiarm Star Topology. <i>Macromolecules</i> , 2016 , 49, 7767-7776	5.5	13
305	Biodegradable hyperbranched polyether-lipids with in-chain pH-sensitive linkages. <i>Polymer Chemistry</i> , 2016 , 7, 6257-6268	4.9	9
304	Unusual triskelion patterns and dye-labelled GUVs: consequences of the interaction of cholesterol-containing linear-hyperbranched block copolymers with phospholipids. <i>Soft Matter</i> , 2015 , 11, 6106-17	3.6	2
303	Epicyanohydrin: Polymerization by Monomer Activation Gives Access to Nitrile-, Amino-, and Carboxyl-Functional Poly(ethylene glycol). <i>Macromolecules</i> , 2015 , 48, 8144-8153	5.5	30

302	Transformation of vaterite nanoparticles to hydroxycarbonate apatite in a hydrogel scaffold: relevance to bone formation. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 7079-7089	7.3	20
301	Water-soluble and redox-responsive hyperbranched polyether copolymers based on ferrocenyl glycidyl ether. <i>Polymer Chemistry</i> , 2015 , 6, 7112-7118	4.9	10
300	Cationic Copolymerization of 3,3-Bis(hydroxymethyl)oxetane and Glycidol: Biocompatible Hyperbranched Polyether Polyols with High Content of Primary Hydroxyl Groups. <i>Biomacromolecules</i> , 2015 , 16, 3297-307	6.9	13
299	Hyperbranched Poly(ethylene glycol) Copolymers: Absolute Values of the Molar Mass, Properties in Dilute Solution, and Hydrodynamic Homology. <i>Macromolecules</i> , 2015 , 48, 5887-5898	5.5	28
298	Biodegradable pH-Sensitive Poly(ethylene glycol) Nanocarriers for Allergen Encapsulation and Controlled Release. <i>Biomacromolecules</i> , 2015 , 16, 3103-11	6.9	28
297	Enhanced immunogenicity of multivalent MUC1 glycopeptide antitumour vaccines based on hyperbranched polymers. <i>Organic and Biomolecular Chemistry</i> , 2015 , 13, 10150-4	3.9	22
296	Aliphatic polycarbonates based on carbon dioxide, furfuryl glycidyl ether, and glycidyl methyl ether: reversible functionalization and cross-linking. <i>Macromolecular Rapid Communications</i> , 2015 , 36, 174-9	4.8	35
295	Statistical properties of linear-hyperbranched graft copolymers prepared via "hypergrafting" of AB(m) monomers from linear B-functional core chains: A molecular dynamics simulation. <i>Journal of Chemical Physics</i> , 2015 , 143, 243125	3.9	6
294	Maleimide Glycidyl Ether: A Bifunctional Monomer for Orthogonal Cationic and Radical Polymerizations. <i>Macromolecular Rapid Communications</i> , 2015 , 36, 1822-8	4.8	14
293	Hyperbranched poly(glycolide) copolymers with glycerol branching points via ring-opening copolymerization. <i>Polymer</i> , 2015 , 72, 436-446	3.9	3
292	Controllable Nonspecific Protein Adsorption by Charged Hyperbranched Polyglycerol Thin Films. <i>Langmuir</i> , 2015 , 31, 13101-6	4	14
291	Fate of linear and branched polyether-lipids in vivo in comparison to their liposomal formulations by 18F-radiolabeling and positron emission tomography. <i>Biomacromolecules</i> , 2015 , 16, 842-51	6.9	15
290	Rheological Consequences of Hydrogen Bonding: Linear Viscoelastic Response of Linear Polyglycerol and Its Permethylated Analogues as a General Model for Hydroxyl-Functional Polymers. <i>Macromolecules</i> , 2015 , 48, 119-130	5.5	37
289	A fully synthetic glycopeptide antitumor vaccine based on multiple antigen presentation on a hyperbranched polymer. <i>Chemistry - A European Journal</i> , 2014 , 20, 4232-6	4.8	40
288	A convenient approach to amphiphilic hyperbranched polymers with thioether shell for the preparation and stabilization of coinage metal (Cu, Ag, Au) nanoparticles. <i>Journal of Polymer Science Part A</i> , 2014 , 52, 1369-1375	2.5	14
287	(1-Adamantyl)methyl glycidyl ether: a versatile building block for living polymerization. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 1075-80	4.8	9
286	Beyond poly(ethylene glycol): linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications. <i>Biomacromolecules</i> , 2014 , 15, 1935-54	6.9	157
285	Stimuli-Responsive Tertiary Amine Functional PEGs Based on N,N-Dialkylglycidylamines. <i>Macromolecules</i> , 2014 , 47, 7679-7690	5.5	28

(2013-2014)

Hydroxyfunctional oxetane-inimers with varied polarity for the synthesis of hyperbranched polyether polyols via cationic ROP. <i>Journal of Polymer Science Part A</i> , 2014 , 52, 2850-2859	2.5	9
Vinylphenylglycidyl ether-based colloidal architectures: high-functionality crosslinking reagents, hybrid raspberry-type particles and smart hydrophobic surfaces. <i>RSC Advances</i> , 2014 , 4, 41348-41352	3.7	9
Living Anionic Polymerization in Continuous Flow: Facilitated Synthesis of High-Molecular Weight Poly(2-vinylpyridine) and Polystyrene. <i>Organic Process Research and Development</i> , 2014 , 18, 1408-1412	3.9	20
Click modification of multifunctional liposomes bearing hyperbranched polyether chains. <i>Biomacromolecules</i> , 2014 , 15, 2440-8	6.9	18
Controlled synthesis of multi-arm star polyether-polycarbonate polyols based on propylene oxide and CO2. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 198-203	4.8	26
Combining oxyanionic polymerization and click-chemistry: a general strategy for the synthesis of polyether polyol macromonomers. <i>Polymer Chemistry</i> , 2014 , 5, 899-909	4.9	19
Ferrocene-Containing Multifunctional Polyethers: Monomer Sequence Monitoring via Quantitative 13C NMR Spectroscopy in Bulk. <i>Macromolecules</i> , 2014 , 47, 2242-2249	5.5	33
Cytotoxicity and chemosensitizing activity of amphiphilic poly(glycerol)-poly(alkylene oxide) block copolymers. <i>Biomacromolecules</i> , 2014 , 15, 2672-81	6.9	21
The Needle in the Haystack Makes the Difference: Linear and Hyperbranched Polyglycerols with a Single Catechol Moiety for Metal Oxide Nanoparticle Coating. <i>Macromolecules</i> , 2014 , 47, 4557-4566	5.5	28
A Challenging Comonomer Pair: Copolymerization of Ethylene Oxide and Glycidyl Methyl Ether to Thermoresponsive Polyethers. <i>Macromolecules</i> , 2014 , 47, 5492-5500	5.5	27
Functional Group Distribution and Gradient Structure Resulting from the Living Anionic Copolymerization of Styrene and -But-3-enyl Styrene <i>ACS Macro Letters</i> , 2014 , 3, 560-564	6.6	32
Evaluation of multifunctional liposomes in human blood serum by light scattering. <i>Langmuir</i> , 2014 , 30, 14954-62	4	33
Supramolecular Antioxidant Assemblies of Hyperbranched Polyglycerols and Phenols. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 2311-2317	2.6	5
Graft Copolymers with Complex Polyether Structures: Poly(ethylene oxide)-graft-Poly(isobutyl vinyl ether) by Combination of Living Anionic and Photoinduced Cationic Graft Polymerization. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 566-571	2.6	9
Poly(carbonate) copolymers with a tailored number of hydroxyl groups from glycidyl ethers and CO2. <i>Polymer Chemistry</i> , 2014 , 5, 814-818	4.9	24
Stereocomplex Formation in Polylactide Multiarm Stars and Comb Copolymers with Linear and Hyperbranched Multifunctional PEG. <i>Macromolecular Chemistry and Physics</i> , 2013 , 214, 1434-1444	2.6	25
Polyether-Based Lipids Synthesized with an Epoxide Construction Kit: Multivalent Architectures for Functional Liposomes. <i>ACS Symposium Series</i> , 2013 , 11-25	0.4	7
Catechol-initiated polyethers: multifunctional hydrophilic ligands for PEGylation and functionalization of metal oxide nanoparticles. <i>Biomacromolecules</i> , 2013 , 14, 193-9	6.9	38
	polyether polyols via cationic ROP. <i>Journal of Polymer Science Part A</i> , 2014 , 52, 2850-2859 Vinylphenylglycidyl ether-based colloidal architectures: high-functionality crosslinking reagents, hybrid raspberry-type particles and smart hydrophobic surfaces. <i>RSC Advances</i> , 2014 , 4, 41348-41352 Living Anionic Polymerization in Continuous Flow: Facilitated Synthesis of High-Molecular Weight Poly(2-vinylpyridine) and Polystyrene. <i>Organic Process Research and Development</i> , 2014 , 18, 1408-1412 Click modification of multifunctional liposomes bearing hyperbranched polyether chains. <i>Biomacromolecules</i> , 2014 , 15, 2440-8 Controlled synthesis of multi-arm star polyether-polycarbonate polyols based on propylene oxide and CO2. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 198-203 Combining oxyanionic polymerization and click-chemistry: a general strategy for the synthesis of polyether polyol macromonomers. <i>Polymer Chemistry</i> , 2014 , 5, 899-909 Ferrocene-Containing Multifunctional Polyethers: Monomer Sequence Monitoring via Quantitative 13C NMR Spectroscopy in Bulk. <i>Macromolecules</i> , 2014 , 47, 2242-2249 Cytotoxicity and chemosensitizing activity of amphiphilic poly(glycerol)-poly(alkylene oxide) block copolymers. <i>Biomacromolecules</i> , 2014 , 15, 2672-81 The Bleedle in the HaystackIMakes the Difference: Linear and Hyperbranched Polyglycerols with a Single Catechol Moiety for Metal Oxide Nanoparticle Coating. <i>Macromolecules</i> , 2014 , 47, 4557-4566 A Challenging Comonomer Pair: Copolymerization of Ethylene Oxide and Glycidyl Methyl Ether to Thermoresponsive Polyethers. <i>Macromolecules</i> , 2014 , 47, 5492-5500 Functional Group Distribution and Gradient Structure Resulting from the Living Anionic Copolymerization of Styrene and -But-3-enyl Styrene. <i>ACS Macro Letters</i> , 2014 , 3, 560-564 Evaluation of multifunctional liposomes in human blood serum by light scattering. <i>Langmuir</i> , 2014 , 30, 14954-62 Supramolecular Antioxidant Assemblies of Hyperbranched Polyglycerols and Phenols. <i>Macromolecular Chem</i>	polyether polyols via cationic ROP. Journal of Polymer Science Part A, 2014, 52, 2850-2859 Vinylphenylglycidyl ether-based colloidal architectures: high-functionality crosslinking reagents, hybrid raspberry-type particles and smart hydrophobic surfaces. RSC Advances, 2014, 4, 41348-41352 John Anionic Polymerization in Continuous Flow: Facilitated Synthesis of High-Molecular Weight Poly(2-vinylpyridine) and Polystyrene. Organic Process Research and Development, 2014, 18, 1408-1412 John Militarian and Discovery of Militarian Star polyether-polycarbonate polyols based on propylene oxide and CO2. Macromolecules, 2014, 15, 2440-8 Controlled synthesis of multi-arm star polyether-polycarbonate polyols based on propylene oxide and CO2. Macromolecular Rapid Communications, 2014, 35, 198-203 Combining oxyanionic polymerization and click-chemistry: a general strategy for the synthesis of polyether polyol macromonomers. Polymer Chemistry, 2014, 5, 899-909 Ferrocene-Containing Multifunctional Polyethers: Monomer Sequence Monitoring via Quantitative 13C NMR Spectroscopy in Bulk. Macromolecules, 2014, 47, 2242-2249 Cytotoxicity and chemosensitizing activity of amphiphilic poly(glycerol)-poly(alkylene oxide) block copolymers. Biomacromolecules, 2014, 15, 2672-81 The Beedle in the HaystacklMakes the Difference: Linear and Hyperbranched Polyglycerols with a Single Catechol Moiety for Metal Oxide Nanoparticle Coating. Macromolecules, 2014, 47, 4557-4566 A Challenging Comonomer Pair: Copolymerization of Ethylene Oxide and Glycidyl Methyl Ether to Thermoresponsive Polyethers. Macromolecules, 2014, 47, 5492-5500 Functional Group Distribution and Gradient Structure Resulting from the Living Anionic Copolymerization of Styrene and -But-3-enyl Styrene. ACS Macro Letters, 2014, 3, 560-564 Evaluation of multifunctional liposomes in human blood serum by light scattering. Langmuir, 2014, 30, 14954-62 Supramolecular Chemistry and Physics, 2014, 215, 2311-2317 Graft Copolymers with Complex Polyether Structures: Poly(ethylene oxi

266	Redox-Responsive Block Copolymers: Poly(vinylferrocene)-b-poly(lactide) Diblock and Miktoarm Star Polymers and Their Behavior in Solution. <i>Organometallics</i> , 2013 , 32, 6033-6039	3.8	25
265	One-pot synthesis of poly(l-lactide) multi-arm star copolymers based on a polyester polyol macroinitiator. <i>Polymer</i> , 2013 , 54, 1993-2000	3.9	11
264	Grafting of hyperbranched polymers: From unusual complex polymer topologies to multivalent surface functionalization. <i>Polymer</i> , 2013 , 54, 5443-5455	3.9	68
263	Monomer Sequence Distribution Monitoring in Living Carbanionic Copolymerization by Real-Time 1H NMR Spectroscopy. <i>Macromolecules</i> , 2013 , 46, 8467-8471	5.5	39
262	ABA Triblock Copolymers Based on Linear Poly(oxymethylene) and Hyperbranched Poly(glycerol): Combining Polyacetals and Polyethers. <i>Macromolecules</i> , 2013 , 46, 8845-8852	5.5	18
261	Polydispersity and Molecular Weight Distribution of Hyperbranched Graft Copolymers via Hypergrafting Df ABm Monomers from Polydisperse Macroinitiator Cores: Theory Meets Synthesis. <i>Macromolecules</i> , 2013 , 46, 5823-5830	5.5	26
260	One-step synthesis of multi-alkyne functional hyperbranched polyglycerols by copolymerization of glycidyl propargyl ether and glycidol. <i>Polymer Chemistry</i> , 2013 , 4, 4730	4.9	23
259	Block copolymers in giant unilamellar vesicles with proteins or with phospholipids. <i>Faraday Discussions</i> , 2013 , 166, 303-15	3.6	10
258	From Biocompatible to Biodegradable: Poly(Ethylene Glycol)s with Predetermined Breaking Points. <i>Advances in Polymer Science</i> , 2013 , 167-190	1.3	12
257	Stable, hydroxyl functional polycarbonates with glycerol side chains synthesized from CO(2) and isopropylidene(glyceryl glycidyl ether). <i>Macromolecular Rapid Communications</i> , 2013 , 34, 150-5	4.8	37
256	Impact of Amino-Functionalization on the Response of Poly(ethylene glycol) (PEG) to External Stimuli <i>ACS Macro Letters</i> , 2013 , 2, 128-131	6.6	12
255	Electrocatalytic Properties of Carbosilane-Based Hyperbranched Polymers Functionalized with Interacting Ferrocenyl Units. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 44-53	2.3	15
254	Ferrocenyl Glycidyl Ether: A Versatile Ferrocene Monomer for Copolymerization with Ethylene Oxide to Water-Soluble, Thermoresponsive Copolymers. <i>Macromolecules</i> , 2013 , 46, 647-655	5.5	66
253	Hyperbranched aliphatic polyether polyols. <i>Journal of Polymer Science Part A</i> , 2013 , 51, 995-1019	2.5	50
252	Combining Ring-Opening Multibranching and RAFT Polymerization: Multifunctional Linear Hyperbranched Block Copolymers via Hyperbranched Macro-Chain-Transfer Agents. <i>Macromolecules</i> , 2013 , 46, 2892-2904	5.5	26
251	Poly(1,2-glycerol carbonate): A Fundamental Polymer Structure Synthesized from CO2 and Glycidyl Ethers. <i>Macromolecules</i> , 2013 , 46, 3280-3287	5.5	80
250	Enlarging the Toolbox: Epoxide Termination of Polyferrocenylsilane (PFS) as a Key Step for the Synthesis of Amphiphilic PFS-Polyether Block Copolymers <i>ACS Macro Letters</i> , 2013 , 2, 313-316	6.6	24
249	Universal concept for the implementation of a single cleavable unit at tunable position in functional poly(ethylene glycol)s. <i>Biomacromolecules</i> , 2013 , 14, 448-59	6.9	39

248	Anionic Polymerization of -(1-Ethoxy ethoxy)styrene: Rapid Access to Poly(-hydroxystyrene) Copolymer Architectures <i>ACS Macro Letters</i> , 2013 , 2, 409-413	6.6	15	
247	Supramolecular Linear-g-Hyperbranched Graft Polymers: Topology and Binding Strength of Hyperbranched Side Chains. <i>Macromolecules</i> , 2013 , 46, 9544-9553	5.5	47	
246	CO2-Based Non-ionic Surfactants: Solvent-Free Synthesis of Poly(ethylene glycol)-block-Poly(propylene carbonate) Block Copolymers. <i>Macromolecular Chemistry and Physics</i> , 2013 , 214, 2848-2855	2.6	24	
245	Micellar interactions in water-AOT based droplet microemulsions containing hydrophilic and amphiphilic polymers. <i>Journal of Chemical Physics</i> , 2013 , 139, 184903	3.9	10	
244	Propargyl-functional aliphatic polycarbonate obtained from carbon dioxide and glycidyl propargyl ether. <i>Macromolecular Rapid Communications</i> , 2013 , 34, 1395-400	4.8	31	
243	Aminofunctional polyethers: smart materials for applications in solution and on surfaces. <i>Polymer International</i> , 2013 , 62, 849-859	3.3	12	
242	From CO2-Based Multifunctional Polycarbonates With a Controlled Number of Functional Groups to Graft Polymers. <i>Macromolecular Chemistry and Physics</i> , 2013 , 214, 892-901	2.6	39	
241	Structure Formation of Polymeric Building Blocks: Complex Polymer Architectures. <i>Advances in Polymer Science</i> , 2013 , 115-210	1.3	5	
240	Directing the self-assembly of semiconducting copolymers: the consequences of grafting linear or hyperbranched polyether side chains. <i>Macromolecular Rapid Communications</i> , 2013 , 34, 1213-9	4.8	8	
239	Microflow Technology in Polymer Synthesis. <i>Macromolecules</i> , 2012 , 45, 9551-9570	5.5	148	
238	Squaric acid mediated chemoselective PEGylation of proteins: reactivity of single-step-activated hamino poly(ethylene glycol)s. <i>Chemistry - A European Journal</i> , 2012 , 18, 16828-35	4.8	23	
237	Squaric acid mediated synthesis and biological activity of a library of linear and hyperbranched poly(glycerol)-protein conjugates. <i>Biomacromolecules</i> , 2012 , 13, 1161-71	6.9	58	
236	Water-Soluble Poly(vinylferrocene)-b-Poly(ethylene oxide) Diblock and Miktoarm Star Polymers. <i>Macromolecules</i> , 2012 , 45, 3409-3418	5.5	46	
235	N,N-Diallylglycidylamine: A Key Monomer for Amino-Functional Poly(ethylene glycol) Architectures. <i>Macromolecules</i> , 2012 , 45, 4581-4589	5.5	43	
234	Water-Soluble Poly(propylene oxide) By Random Copolymerization of Propylene Oxide with a Protected Glycidol Monomer. <i>Macromolecules</i> , 2012 , 45, 3039-3046	5.5	36	
233	Branched Acid-Degradable, Biocompatible Polyether Copolymers via Anionic Ring-Opening Polymerization Using an Epoxide Inimer. <i>ACS Macro Letters</i> , 2012 , 1, 1094-1097	6.6	49	
		6.6	49	

230	How Structure-Related Collapse Mechanisms Determine Nanoscale Inhomogeneities in Thermoresponsive Polymers. <i>Macromolecules</i> , 2012 , 45, 7535-7548	5.5	16
229	Linear-Hyperbranched Graft-Copolymers viaGrafting-toStrategy Based on Hyperbranched Dendron Analogues and Reactive Ester Polymers. <i>Macromolecules</i> , 2012 , 45, 5901-5910	5.5	34
228	Functional PEG-based polymers with reactive groups via anionic ROP of tailor-made epoxides. <i>Polymer Chemistry</i> , 2012 , 3, 1714	4.9	78
227	Hyperbranched Poly(propylene oxide): A Multifunctional Backbone-Thermoresponsive Polyether Polyol Copolymer. <i>ACS Macro Letters</i> , 2012 , 1, 888-891	6.6	51
226	Controlled Synthesis of Linear Polymers with Highly Branched Side Chains by "Hypergrafting": Poly(4-hydroxy styrene)hyperbranched Polyglycerol <i>ACS Macro Letters</i> , 2012 , 1, 461-464	6.6	35
225	Long-Chain Branched Poly(Lactide)s Based on Polycondensation of AB2-type Macromonomers. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 1349-1358	2.6	17
224	Synthesis of Oxetane-Functional Aliphatic Polyesters via Enzymatic Polycondensation. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 1783-1790	2.6	18
223	Thermoresponsive copolymers of ethylene oxide and N,N-diethyl glycidyl amine: polyether polyelectrolytes and PEGylated gold nanoparticle formation. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 1556-61	4.8	22
222	Polysiloxane-backbone block copolymers in a one-pot synthesis: a silicone platform for facile functionalization. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 1861-7	4.8	36
221	Mixed layers of DPPC and a linear poly(ethylene glycol)-b-hyperbranched poly(glycerol) block copolymer having a cholesteryl end group. <i>Colloid and Polymer Science</i> , 2012 , 290, 579-588	2.4	8
220	Poly(ethylene glycol-co-allyl glycidyl ether)s: a PEG-based modular synthetic platform for multiple bioconjugation. <i>Bioconjugate Chemistry</i> , 2011 , 22, 436-44	6.3	92
219	Hyperbranched EConjugated Polymers 2011 , 273-300		1
218	Ring-Opening Multibranching Polymerization 2011 , 175-202		1
217	Polycondensation of ABx Monomers 2011 , 27-77		1
216	Synthesis of Hyperbranched Polymers via Polymerization of Functionally Symmetric Monomer Pairs 2011 , 79-106		3
215	Promising Dendritic Materials: An Introduction to Hyperbranched Polymers 2011 , 1-26		15
214	Synthesis of Hyperbranched Polymers via Polymerization of Asymmetric Monomer Pairs 2011 , 107-138		5
213	Self-Condensing Vinyl Polymerization 2011 , 139-174		6

212	Hyperbranched Copolymers Synthesized by Cocondensation and Radical Copolymerization 2011 , 203-2	26	2
211	Degree of Branching (DB) 2011 , 301-316		1
210	Influence of Branching Architecture on Polymer Properties 2011 , 317-331		1
209	Biological and Medical Applications of Hyperbranched Polymers 2011 , 387-413		6
208	Kinetic Theory of Hyperbranched Polymerization 2011 , 333-367		4
207	Hyperbranched and Dendritic Polyolefins Prepared by Transition Metal Catalyzed Polymerization 2011 , 251-271		1
206	Convergent Synthesis of Hyperbranched Polymers and Related Approaches 2011 , 227-249		
205	Introducing an amine functionality at the block junction of amphiphilic block copolymers by anionic polymerization strategies. <i>Chemical Communications</i> , 2011 , 47, 8964-6	5.8	21
204	PEG-based Multifunctional Polyethers with Highly Reactive Vinyl-Ether Side Chains for Click-Type Functionalization. <i>Macromolecules</i> , 2011 , 44, 6326-6334	5.5	66
203	Synthesis of Water-Soluble Copolymers Carrying Long-Chain (C12 to C30) Aliphatic Moieties. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 1648-1653	2.6	1
202	Organobase-Catalyzed Synthesis of Multiarm Star Polylactide With Hyperbranched Poly(ethylene glycol) as the Core. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 2478-2486	2.6	17
201	Towards the generation of self-healing materials by means of a reversible photo-induced approach. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 468-73	4.8	173
200	Oligo(glycerol) methacrylate macromonomers. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 1910-5	5 4.8	15
199	From an epoxide monomer toolkit to functional PEG copolymers with adjustable LCST behavior. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 1930-4	4.8	36
198	Multifunktionelle Poly(ethylenglycole). Angewandte Chemie, 2011, 123, 8136-8146	3.6	13
197	Multifunctional Poly(ethylene glycol)s. Angewandte Chemie - International Edition, 2011 , 50, 7988-97	16.4	150
196	Die vielen Gesichter des Poly(ethylenglykol)s. <i>Chemie in Unserer Zeit</i> , 2011 , 45, 338-349	0.2	27
195	Interaction between a water-in-oil microemulsion and a linear-dendritic poly(propylene oxide) polyglycerol block copolymer. <i>Soft Matter</i> , 2011 , 7, 10879	3.6	14

194	Langmuir and Langmuir-Blodgett films of multifunctional, amphiphilic polyethers with cholesterol moieties. <i>Langmuir</i> , 2011 , 27, 1978-89	4	21
193	Rapid Access to Polyfunctional Lipids with Complex Architecture via Oxyanionic Ring-Opening Polymerization. <i>Macromolecules</i> , 2011 , 44, 4648-4657	5.5	43
192	Partially quarternized amino functional poly(methacrylate) terpolymers: versatile drug permeability modifiers. <i>Biomacromolecules</i> , 2011 , 12, 425-31	6.9	4
191	Mesogen-Initiated Linear Polyglycerol Isomers: The Ordering Effect of a Single Cholesterol Unit on Btickyllsotropic Chains. <i>Macromolecules</i> , 2011 , 44, 6767-6775	5.5	10
190	A Combined DPE/Epoxide Termination Strategy for Hydroxyl End-Functional Poly(2-vinylpyridine) and Amphiphilic AB2-Miktoarm Stars. <i>Macromolecules</i> , 2011 , 44, 9887-9890	5.5	24
189	Phase Behavior of the System Linear Polyglycerol + Methanol + Carbon Dioxide. <i>Journal of Chemical</i> & Samp; Engineering Data, 2011, 56, 2927-2931	2.8	7
188	Correlations between Ion Conductivity and Polymer Dynamics in Hyperbranched Poly(ethylene oxide) Electrolytes for Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2011 , 23, 2685-2688	9.6	56
187	Lineardendritic block copolymers: The state of the art and exciting perspectives. <i>Progress in Polymer Science</i> , 2011 , 36, 1-52	29.6	223
186	Hyperbranched polyglycerol-based lipids via oxyanionic polymerization: toward multifunctional stealth liposomes. <i>Biomacromolecules</i> , 2010 , 11, 568-74	6.9	67
185	Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. <i>Accounts of Chemical Research</i> , 2010 , 43, 129-41	24.3	462
185		24.3 5.5	462 39
	multipurpose applications. Accounts of Chemical Research, 2010 , 43, 129-41		
184	multipurpose applications. <i>Accounts of Chemical Research</i> , 2010 , 43, 129-41 Multihydroxyl-Functional Polystyrenes in Continuous Flow. <i>Macromolecules</i> , 2010 , 43, 5582-5588 Chiroptical Induction and Molecular Recognition in Optically Active Hyperbranched Polyethers with	5.5	39
184	multipurpose applications. <i>Accounts of Chemical Research</i> , 2010 , 43, 129-41 Multihydroxyl-Functional Polystyrenes in Continuous Flow. <i>Macromolecules</i> , 2010 , 43, 5582-5588 Chiroptical Induction and Molecular Recognition in Optically Active Hyperbranched Polyethers with Inherently Chiral Benzophenone Core. <i>Macromolecules</i> , 2010 , 43, 9583-9587	5·5 5·5	39
184 183 182	multipurpose applications. <i>Accounts of Chemical Research</i> , 2010 , 43, 129-41 Multihydroxyl-Functional Polystyrenes in Continuous Flow. <i>Macromolecules</i> , 2010 , 43, 5582-5588 Chiroptical Induction and Molecular Recognition in Optically Active Hyperbranched Polyethers with Inherently Chiral Benzophenone Core. <i>Macromolecules</i> , 2010 , 43, 9583-9587 Soluble Hyperbranched Poly(glycolide) Copolymers. <i>Macromolecules</i> , 2010 , 43, 8539-8548 Bunctional Poly(ethylene glycol)EPEG-Based Random Copolymers with 1,2-Diol Side Chains and	5·5 5·5	39 8 23
184 183 182	Multihydroxyl-Functional Polystyrenes in Continuous Flow. <i>Macromolecules</i> , 2010 , 43, 5582-5588 Chiroptical Induction and Molecular Recognition in Optically Active Hyperbranched Polyethers with Inherently Chiral Benzophenone Core. <i>Macromolecules</i> , 2010 , 43, 9583-9587 Soluble Hyperbranched Poly(glycolide) Copolymers. <i>Macromolecules</i> , 2010 , 43, 8539-8548 Bunctional Poly(ethylene glycol)EPEG-Based Random Copolymers with 1,2-Diol Side Chains and Terminal Amino Functionality. <i>Macromolecules</i> , 2010 , 43, 8511-8518 Amino Functional Poly(ethylene glycol) Copolymers via Protected Amino Glycidol. <i>Macromolecules</i> ,	5.5 5.5 5.5	39 8 23 56
184 183 182 181	Multihydroxyl-Functional Polystyrenes in Continuous Flow. <i>Macromolecules</i> , 2010 , 43, 5582-5588 Chiroptical Induction and Molecular Recognition in Optically Active Hyperbranched Polyethers with Inherently Chiral Benzophenone Core. <i>Macromolecules</i> , 2010 , 43, 9583-9587 Soluble Hyperbranched Poly(glycolide) Copolymers. <i>Macromolecules</i> , 2010 , 43, 8539-8548 Bunctional Poly(ethylene glycol)[IPEG-Based Random Copolymers with 1,2-Diol Side Chains and Terminal Amino Functionality. <i>Macromolecules</i> , 2010 , 43, 8511-8518 Amino Functional Poly(ethylene glycol) Copolymers via Protected Amino Glycidol. <i>Macromolecules</i> , 2010 , 43, 2244-2251 Rapid Synthesis and MALDI-ToF Characterization of Poly(ethylene oxide) Multiarm Star Polymers.	5.5 5.5 5.5 5.5	39 8 23 56 79

(2009-2010)

176	Poly(glycolide) multi-arm star polymers: Improved solubility via limited arm length. <i>Beilstein Journal of Organic Chemistry</i> , 2010 , 6,	2.5	17
175	围-Heterotelechelic Hyperbranched Polyethers Solubilize Carbon Nanotubes. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 932-939	2.6	14
174	Hetero-Multifunctional Poly(ethylene glycol) Copolymers with Multiple Hydroxyl Groups and a Single Terminal Functionality. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 258-64	4.8	52
173	Synthesis, Characterization and Preliminary Biological Evaluation of P(HPMA)-b-P(LLA) Copolymers: A New Type of Functional Biocompatible Block Copolymer. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 1492-500	4.8	32
172	Hyperbranched PEG by random copolymerization of ethylene oxide and glycidol. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 1811-5	4.8	50
171	A road less traveled to functional polymers: epoxide termination in living carbanionic polymer synthesis. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 1938-47	4.8	33
170	Entanglement transition in hyperbranched polyether-polyols. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 2127-32	4.8	26
169	Phase behavior of the system hyperbranched polyglycerol+methanol+carbon dioxide. <i>Fluid Phase Equilibria</i> , 2010 , 299, 252-258	2.5	15
168	Branched versus linear oligo(dimethylsiloxane): Differences in their thermodynamic interaction with solvents. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2010 , 48, 1309-1318	2.6	9
167	Electroactive linear-hyperbranched block copolymers based on linear poly(ferrocenylsilane)s and hyperbranched poly(carbosilane)s. <i>Chemistry - A European Journal</i> , 2009 , 15, 9068-77	4.8	62
166	Branched Versus Linear Polyisoprene: Flory Huggins Interaction Parameters for their Solutions in Cyclohexane. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 1433-1439	2.6	12
165	Hyperbranchedlinearflyperbranched ABA-type block copolymers based on poly(ethylene oxide) and polyglycerol. <i>Polymer International</i> , 2009 , 58, 989-995	3.3	40
164	Ferrocenyl-functionalized long chain branched polydienes. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 2518-2529	2.5	12
163	Photocatalytic printing of inorganic nanopatterns via poly(styrene-block-carbosilane) copolymer thin films on titania substrates. <i>Chemical Communications</i> , 2009 , 1091-3	5.8	4
162	Synthesis and noncovalent protein conjugation of linear-hyperbranched PEG-poly(glycerol) alpha,omega(n)-telechelics. <i>Journal of the American Chemical Society</i> , 2009 , 131, 7954-5	16.4	105
161	Hyperbranched Polyglycerols with Elevated Molecular Weights: A Facile Two-Step Synthesis Protocol Based on Polyglycerol Macroinitiators. <i>Macromolecules</i> , 2009 , 42, 3230-3236	5.5	107
160	Inimer-Promoted Synthesis of Branched and Hyperbranched Polylactide Copolymers. <i>Macromolecules</i> , 2009 , 42, 9443-9456	5.5	50
159	Poly(lactide)-block-Poly(HEMA) Block Copolymers: An Orthogonal One-Pot Combination of ROP and ATRP, Using a Bifunctional Initiator. <i>Macromolecules</i> , 2009 , 42, 5622-5628	5.5	104

158	Ionic Liquids on Demand in Continuous Flow. Organic Process Research and Development, 2009, 13, 961	-96.4	27
157	Hyperbranched Polycarbosilanes and Polycarbosiloxanes via Hydrosilylation Polymerization. <i>Advances in Silicon Science</i> , 2009 , 345-375		3
156	Incorporation of a Photosensitizer Core within Hyperbranched Polyether Polyols: Effect of the Branched Shell on the Core Properties. <i>Macromolecules</i> , 2008 , 41, 1189-1195	5.5	15
155	Amphiphilic Linear-Hyperbranched Block Copolymers with Linear Poly(ethylene oxide) and Hyperbranched Poly(carbosilane) Block. <i>Macromolecules</i> , 2008 , 41, 9602-9611	5.5	44
154	Double-Hydrophilic Linear-Hyperbranched Block Copolymers Based on Poly(ethylene oxide) and Poly(glycerol). <i>Macromolecules</i> , 2008 , 41, 1184-1188	5.5	104
153	Synthesis and Characterization of Poly(glyceryl glycerol) Block Copolymers. <i>Macromolecules</i> , 2008 , 41, 1909-1911	5.5	58
152	Photocatalysis within hyperbranched polyethers with a benzophenone core. <i>Journal of Organic Chemistry</i> , 2008 , 73, 4680-3	4.2	11
151	Systematic investigation of functional core variation within hyperbranched polyglycerols. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 2049-2061	2.5	18
150	Branched and Functionalized Polybutadienes by a Facile Two-Step Synthesis. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 675-684	2.6	31
149	Microstructured Reactors for Polymer Synthesis: A Renaissance of Continuous Flow Processes for Tailor-Made Macromolecules?. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 343-356	2.6	103
148	Carbanions on Tap Living Anionic Polymerization in a Microstructured Reactor. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 1106-1114	2.6	57
147	Gold nanoparticles coated with a thermosensitive hyperbranched polyelectrolyte: towards smart temperature and pH nanosensors. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 2227-30	16.4	143
146	Gold Nanoparticles Coated with a Thermosensitive Hyperbranched Polyelectrolyte: Towards Smart Temperature and pH Nanosensors. <i>Angewandte Chemie</i> , 2008 , 120, 2259-2262	3.6	9
145	Electrochemical and bioelectrocatalytical properties of novel block-copolymers containing interacting ferrocenyl units. <i>Journal of Organometallic Chemistry</i> , 2008 , 693, 2803-2811	2.3	26
144	Pencil Lead as a Matrix for MALDI-ToF Mass Spectrometry of Sensitive Functional Polymers. <i>Macromolecules</i> , 2007 , 40, 746-751	5.5	22
143	Synthesis of Hyperbranched Polyglycerol in a Continuous Flow Microreactor. <i>Chemical Engineering and Technology</i> , 2007 , 30, 1519-1524	2	51
142	Water-Soluble Fluorescent Ag Nanoclusters Obtained from Multiarm Star Poly(acrylic acid) as Molecular Hydrogel Templates. <i>Advanced Materials</i> , 2007 , 19, 349-352	24	242
141	Novel Multifunctional Polymeric Photoinitiators and Photo-Coinitiators Derived from Hyperbranched Polyglycerol. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 1694-1706	2.6	32

(2006-2007)

140	Multi-Arm Star Poly(L-lactide) with Hyperbranched Polyglycerol Core. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 1657-1665	2.6	68	
139	A Facile Two-Step Route to Branched Polyisoprenes via ABn-Macromonomers. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 704-709	4.8	28	
138	Water-soluble polyesters from long chain alkylesters of citric acid and poly(ethylene glycol). <i>European Polymer Journal</i> , 2007 , 43, 1288-1301	5.2	5	
137	Branched versus linear polyisoprene: Fractionation and phase behavior. <i>European Polymer Journal</i> , 2007 , 43, 4236-4243	5.2	16	
136	Multiarm star polyglycerol-block-poly(HEMA) as a versatile precursor for the preparation of micellar nanocapsules with different properties. <i>Reactive and Functional Polymers</i> , 2007 , 67, 156-164	4.6	24	
135	Novel multifunctional hyperbranched polymeric photoinitiators with built-in amine coinitiators for UV curing. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3389		38	
134	Miscibility and properties of linear poly(l-lactide)/branched poly(l-lactide) copolyester blends. <i>Polymer</i> , 2006 , 47, 3740-3746	3.9	28	
133	Hockey-Puck micelles from oligo(p-benzamide)-b-PEG rod-coil block copolymers. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2969-75	16.4	57	
132	Multi-Arm Star Polyglycerol-block-poly(tert-butyl acrylate) and the Respective Multi-Arm Poly(acrylic acid) Stars. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 57-64	2.6	61	
131	Supramolecular Thermotropic Liquid Crystalline Materials with Nematic Mesophase Based on Methylated Hyperbranched Polyethylenimine and Mesogenic Carboxylic Acid. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 69-75	4.8	27	
130	Hybrid organic-inorganic nanostructures fabricated from layer-by-layer self-assembled multilayers of hyperbranched polyglycerols and phosphorus dendrimers. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 3871-6	1.3	11	
129	Linear-Hyperbranched Block Copolymers Consisting of Polystyrene and Dendritic Poly(carbosilane) Block. <i>Macromolecules</i> , 2006 , 39, 971-977	5.5	54	
128	Hyperbranched Polylactide Copolymers. <i>Macromolecules</i> , 2006 , 39, 1719-1723	5.5	87	
127	Synthesis of multiarm star poly(glycerol)-block-poly(2-hydroxyethyl methacrylate). <i>Biomacromolecules</i> , 2006 , 7, 919-26	6.9	53	
126	Makromolekulare Chemie 2005. Nachrichten Aus Der Chemie, 2006 , 54, 292-300	0.1	1	
125	Optically active amphiphilic hyperbranched polyglycerols as templates for palladium nanoparticles. <i>Inorganica Chimica Acta</i> , 2006 , 359, 1837-1844	2.7	21	
124	Negatively charged hyperbranched polyether-based polyelectrolytes. <i>Colloid and Polymer Science</i> , 2006 , 284, 1293-1301	2.4	8	
123	Complex of Hyperbranched Polyethylenimine with Cuprous Halide as Recoverable Homogeneous Catalyst for the Atom Transfer Radical Polymerization of Methyl Methacrylate. <i>Macromolecules</i> , 2006 , 39, 2092-2099	5.5	28	

122	Controlled crystallization of CaCO(3) on hyperbranched polyglycerol adsorbed to self-assembled monolayers. <i>Langmuir</i> , 2005 , 21, 3987-91	4	36
121	Synergistic assembly of hyperbranched polyethylenimine and fatty acids leading to unusual supramolecular nanocapsules. <i>Chemical Communications</i> , 2005 , 755-7	5.8	45
120	Role of Topology and Amphiphilicity for Guest Encapsulation in Functionalized Hyperbranched Poly(ethylenimine)s. <i>Macromolecules</i> , 2005 , 38, 227-229	5.5	91
119	Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers. <i>Biochemistry</i> , 2005 , 44, 4042-54	3.2	135
118	Enzyme-Catalyzed Synthesis of Hyperbranched Aliphatic Polyesters. ACS Symposium Series, 2005, 354-3	365.4	3
117	Rod-Length Dependent Aggregation in a Series of Oligo(p-benzamide)-Block-Poly(ethylene glycol) Rod-Coil Copolymers. <i>Macromolecular Chemistry and Physics</i> , 2005 , 206, 2067-2074	2.6	31
116	Aliphatic Hyperbranched Copolyesters by Combination of ROP and AB2-Polycondensation. <i>Macromolecular Chemistry and Physics</i> , 2005 , 206, 2421-2428	2.6	30
115	Linear-Hyperbranched Amphiphilic AB Diblock Copolymers Based on Polystyrene and Hyperbranched Polyglycerol. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 862-867	4.8	62
114	Soluble oligoaramide precursorsa novel class of building blocks for rod-coil architectures. <i>Chemistry - A European Journal</i> , 2005 , 11, 2170-6	4.8	33
113	Synthesis of reactive hyperbranched and star-like polyethers and their use for toughening of vinylesterDrethane hybrid resins. <i>Polymer</i> , 2004 , 45, 1185-1195	3.9	53
112	Synthesis and supramolecular association of immobilized NCN-pincer platinum(II) complexes on hyperbranched polyglycerol supports. <i>Chemistry - A European Journal</i> , 2004 , 10, 1267-73	4.8	49
111	Vaporllquid equilibria in dendrimer and hyperbranched polymer solutions: experimental data and modeling using UNIFAC-FV. <i>Fluid Phase Equilibria</i> , 2004 , 221, 83-96	2.5	18
110	Electron-transfer reduction of selected alcohols with alkalide K\(\Pi\)K+(15-crown-5)2 via organometallic intermediates. <i>Journal of Organometallic Chemistry</i> , 2004 , 689, 2361-2367	2.3	2
109	Reactive core/shell type hyperbranched blockcopolyethers as new liquid rubbers for epoxy toughening. <i>Polymer</i> , 2004 , 45, 2155-2164	3.9	68
108	Non-linear effect of 18-crown-6 in propylene oxide polymerization with potassium glycidoxide used as the inimer. <i>Polymer</i> , 2004 , 45, 7047-7051	3.9	8
107	Hyperbranched Polymers: Structure of Hyperbranched Polyglycerol and Amphiphilic Poly(glycerol ester)s in Dilute Aqueous and Nonaqueous Solution. <i>Macromolecules</i> , 2004 , 37, 8394-8399	5.5	66
106	Optically Active Hyperbranched Polyglycerol as Scaffold for Covalent and Noncovalent Immobilization of Platinum(II) NCN-Pincer Complexes. Catalytic Application and Recovery. <i>Organometallics</i> , 2004 , 23, 1525-1532	3.8	61
105	From Random Coil to Extended Nanocylinder: Dendrimer Fragments Shape Polymer Chains 2003 , 306-	313	

(2000-2003)

104	Form fluctuations of carbosilane dendrimers in dilute solution: a study using neutron spin echo spectroscopy. <i>Colloid and Polymer Science</i> , 2003 , 281, 593-600	2.4	9
103	Linear-dendritic nonionic poly(propylene oxide) polyglycerol surfactants. <i>Tetrahedron</i> , 2003 , 59, 4017-	402 <u>4</u>	91
102	Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 1329-34	16.4	560
101	Enzyme-Catalyzed Synthesis of Hyperbranched Aliphatic Polyesters. <i>Macromolecular Rapid Communications</i> , 2002 , 23, 292-296	4.8	79
100	Experimental data and theoretical considerations on vaporliquid and liquidliquid equilibria of hyperbranched polyglycerol and PVA solutions. <i>Fluid Phase Equilibria</i> , 2002 , 201, 359-379	2.5	43
99	Hyperverzweigte Polymere: von baumartigen Makromoleklen zu Funktionsmaterialien. Nachrichten Aus Der Chemie, 2002 , 50, 1218-1224	0.1	2
98	Carboxylated and Sulfonated Poly(arylene-co-arylene sulfone)s: Thermostable Polyelectrolytes for Fuel Cell Applications. <i>Macromolecules</i> , 2002 , 35, 7936-7941	5.5	86
97	Encapsulation of Hydrophilic Pincer P latinum(II) Complexes in Amphiphilic Hyperbranched Polyglycerol Nanocapsules. <i>Macromolecules</i> , 2002 , 35, 5734-5737	5.5	92
96	Dendritic polyglycerol: a new versatile biocompatible-material. <i>Reviews in Molecular Biotechnology</i> , 2002 , 90, 257-67		281
95	Hyperbranched molecular nanocapsules: comparison of the hyperbranched architecture with the perfect linear analogue. <i>Journal of the American Chemical Society</i> , 2002 , 124, 9698-9	16.4	279
94	OrganicIhorganic hybrid networks by the solgel process and subsequent photopolymerization. <i>Journal of Polymer Science Part A</i> , 2001 , 39, 4274-4282	2.5	24
93	Hyperbranched polyesters and their application in dental composites: monomers for low shrinking composites. <i>Polymers for Advanced Technologies</i> , 2001 , 12, 346-354	3.2	46
92	OrganicIhorganic Hybrid Nanocomposites Prepared by Means of Sol © el Condensation of Bismethacrylatesilanes in Reactive Diluents. <i>Advanced Functional Materials</i> , 2001 , 11, 425	15.6	27
91	Acrylate-Terminated Macromonomers by Michael Addition. <i>Macromolecular Chemistry and Physics</i> , 2001 , 202, 3484-3489	2.6	8
90	Bismethacrylate-Based Hybrid Monomers via Michael-Addition Reactions. <i>Macromolecules</i> , 2001 , 34, 5778-5785	5.5	39
89	Synthesis of Hyperbranched Aromatic Homo- and Copolyesters via the Slow Monomer Addition Method. <i>Macromolecules</i> , 2001 , 34, 7692-7698	5.5	60
88	Control of the molecular weight of hyperbranched polyglycerols. <i>Macromolecular Symposia</i> , 2001 , 163, 67-74	0.8	35
87	Hyperbranched polyglycerols by ring-opening multibranching polymerization. <i>Macromolecular Symposia</i> , 2000 , 153, 187-196	0.8	38

86	Synthesis of poly(glycerol)-block-poly(methyl acrylate) multi-arm star polymers. <i>Macromolecular Rapid Communications</i> , 2000 , 21, 226-230	4.8	68
85	Role of cyclization in the synthesis of hyperbranched aliphatic polyesters. <i>Macromolecular Chemistry and Physics</i> , 2000 , 201, 782-791	2.6	113
84	Multi-arm star block copolymers based on Etaprolactone with hyperbranched polyglycerol core. <i>Macromolecular Chemistry and Physics</i> , 2000 , 201, 792-797	2.6	58
83	Macromolecular-Multisite Catalysts Obtained by Grafting Diaminoaryl Palladium(ii) Complexes onto a Hyperbranched-Polytriallylsilane Support. <i>Angewandte Chemie</i> , 2000 , 112, 3587-3589	3.6	9
82	Controlling the growth of polymer trees: concepts and perspectives for hyperbranched polymers. <i>Chemistry - A European Journal</i> , 2000 , 6, 2499-506	4.8	255
81	Macromolecular-Multisite Catalysts Obtained by Grafting Diaminoaryl Palladium(ii) Complexes onto a Hyperbranched-Polytriallylsilane Support. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 3445-3447	16.4	78
80	Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. <i>Journal of Controlled Release</i> , 2000 , 65, 133-48	11.7	1054
79	Preparation of Catalytically Active Palladium Nanoclusters in Compartments of Amphiphilic Hyperbranched Polyglycerols. <i>Macromolecules</i> , 2000 , 33, 3958-3960	5.5	95
78	Chiral Hyperbranched Dendron Analogues. <i>Macromolecules</i> , 2000 , 33, 253-254	5.5	71
77	An Approach to CoreBhell-Type Architectures in Hyperbranched Polyglycerols by Selective Chemical Differentiation. <i>Macromolecules</i> , 2000 , 33, 8158-8166	5.5	135
76	Synthesis and Thermal Behavior of Esterified Aliphatic Hyperbranched Polyether Polyols. <i>Macromolecules</i> , 2000 , 33, 1330-1337	5.5	61
75	Hyperbranched Polyether P olyols Based on Polyglycerol:□Polarity Design by Block Copolymerization with Propylene Oxide. <i>Macromolecules</i> , 2000 , 33, 309-314	5.5	111
74	Functional Poly(ethylene oxide) Multiarm Star Polymers: ©Core-First Synthesis Using Hyperbranched Polyglycerol Initiators. <i>Macromolecules</i> , 2000 , 33, 315-320	5.5	151
73	Copolymers of Glycidol and Glycidyl Ethers: Design of Branched Polyether Polyols by Combination of Latent Cyclic AB2 and ABR Monomers. <i>Macromolecules</i> , 2000 , 33, 7682-7692	5.5	79
72	Multi-arm star block copolymers based on Etaprolactone with hyperbranched polyglycerol core 2000 , 201, 792		1
71	Silicon-Based Dendrimers. <i>Topics in Current Chemistry</i> , 2000 , 69-129		71
70	Carbosilane Dendrimers Esynthesis, Functionalization, Application 1999, 3-14		4
69	Dielectric relaxation in carbosilane dendrimers with cyanobiphenyl end groups. <i>Colloid and Polymer Science</i> , 1999 , 277, 1186-1192	2.4	18

68	Hyperverzweigte Polyetherpolyole mit fl\(\mathbb{B}\)sigkristallinen Eigenschaften. <i>Angewandte Chemie</i> , 1999 , 111, 3107-3110	3.6	6
67	Molekulare Nanokapseln auf der Basis von amphiphilen hyperverzweigten Polyglycerinen. <i>Angewandte Chemie</i> , 1999 , 111, 3758-3761	3.6	30
66	A Novel Phenol for Use in Convergent and Divergent Dendrimer Synthesis: Access to Core Functionalisable Trifurcate Carbosilane DendrimersThe X-ray Crystal Structure of [1,3,5-Tris{4-(triallylsilyl)phenylester}benzene]. <i>Chemistry - A European Journal</i> , 1999 , 5, 2191-2197	4.8	18
65	Hyperbranched Polyether Polyols with Liquid Crystalline Properties. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 2928-2930	16.4	56
64	Molecular Nanocapsules Based on Amphiphilic Hyperbranched Polyglycerols. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 3552-3555	16.4	227
63	Styrene-vinylferrocene random and block copolymers by TEMPO-mediated radical polymerization. <i>Macromolecular Rapid Communications</i> , 1999 , 20, 203-209	4.8	28
62	Degree of branching in hyperbranched polymers. 3 Copolymerization of ABm-monomers with AB and ABn-monomers. <i>Acta Polymerica</i> , 1999 , 50, 67-76		151
61	Dielectric Relaxation in Carbosilane Dendrimers with Perfluorinated End Groups. <i>Macromolecules</i> , 1999 , 32, 1962-1966	5.5	38
60	Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization. <i>Macromolecules</i> , 1999 , 32, 4240-4246	5.5	921
59	Silsesquioxane-Based Amphiphiles. <i>Langmuir</i> , 1999 , 15, 4752-4756	4	71
59 58	Silsesquioxane-Based Amphiphiles. <i>Langmuir</i> , 1999 , 15, 4752-4756 The superstructure of carbosilane dendrimers with perfluorinated end groups in bulk and in solution. <i>Macromolecular Symposia</i> , 1999 , 146, 33-39	4 0.8	71
	The superstructure of carbosilane dendrimers with perfluorinated end groups in bulk and in		
58	The superstructure of carbosilane dendrimers with perfluorinated end groups in bulk and in solution. <i>Macromolecular Symposia</i> , 1999 , 146, 33-39	0.8	11
58 57	The superstructure of carbosilane dendrimers with perfluorinated end groups in bulk and in solution. <i>Macromolecular Symposia</i> , 1999 , 146, 33-39 Phasenverhalten von Poly(di-n-decylsilan). <i>Monatshefte Fil Chemie</i> , 1999 , 130, 175 Carbosilandendrimere Eynthese, Funktionalisierung und Anwendung. <i>Monatshefte Fil Chemie</i> ,	0.8	11 2 34
58 57 56	The superstructure of carbosilane dendrimers with perfluorinated end groups in bulk and in solution. <i>Macromolecular Symposia</i> , 1999 , 146, 33-39 Phasenverhalten von Poly(di-n-decylsilan). <i>Monatshefte Fil Chemie</i> , 1999 , 130, 175 Carbosilandendrimere Eynthese, Funktionalisierung und Anwendung. <i>Monatshefte Fil Chemie</i> , 1999 , 130, 3 Molecular Nanocapsules Based on Amphiphilic Hyperbranched Polyglycerols. <i>Angewandte Chemie</i> -	0.8	11 2 34
58 57 56 55	The superstructure of carbosilane dendrimers with perfluorinated end groups in bulk and in solution. <i>Macromolecular Symposia</i> , 1999 , 146, 33-39 Phasenverhalten von Poly(di-n-decylsilan). <i>Monatshefte Fil Chemie</i> , 1999 , 130, 175 Carbosilandendrimere Eynthese, Funktionalisierung und Anwendung. <i>Monatshefte Fil Chemie</i> , 1999 , 130, 3 Molecular Nanocapsules Based on Amphiphilic Hyperbranched Polyglycerols. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 3552-3555	0.8 1.4 1.4	11 2 34 16
58 57 56 55 54	The superstructure of carbosilane dendrimers with perfluorinated end groups in bulk and in solution. <i>Macromolecular Symposia</i> , 1999 , 146, 33-39 Phasenverhalten von Poly(di-n-decylsilan). <i>Monatshefte Fil Chemie</i> , 1999 , 130, 175 Carbosilandendrimere Esynthese, Funktionalisierung und Anwendung. <i>Monatshefte Fil Chemie</i> , 1999 , 130, 3 Molecular Nanocapsules Based on Amphiphilic Hyperbranched Polyglycerols. <i>Angewandte Chemie-International Edition</i> , 1999 , 38, 3552-3555 Heteroatom-Based Dendrimers. <i>Advanced Materials</i> , 1998 , 10, 279-293 Ambient-Temperature Liquid-Crystalline Bismethacrylates Based on Cholesterol: Cholesteric and	0.8 1.4 1.4 16.4	11 2 34 16 145

50	Hyperbranched carbosilane oxazoline-macromonomers: polymerization and coupling to a trimesic acid core. <i>Macromolecular Rapid Communications</i> , 1998 , 19, 461-465	4.8	36
49	Thermodynamics of polymer blends of poly(isobutylene) and poly(dimethylsilylenemethylene). <i>Acta Polymerica</i> , 1998 , 49, 356-362		5
48	Segmental Dynamics in Dendrimers with Perfluorinated End Groups: A Study Using Quasielastic Neutron Scattering. <i>Macromolecules</i> , 1998 , 31, 5415-5423	5.5	57
47	Hyperbranched Polymers Prepared via the Core-Dilution/Slow Addition Technique: Computer Simulation of Molecular Weight Distribution and Degree of Branching. <i>Macromolecules</i> , 1998 , 31, 3790)-3801	243
46	Enhancing the Degree of Branching of Hyperbranched Polymers by Postsynthetic Modification. <i>Macromolecules</i> , 1998 , 31, 2381-2383	5.5	66
45	Polymerization of polymer/ferroelectric liquid crystal composites formed with branched liquid crystalline bismethacrylates. <i>Liquid Crystals</i> , 1998 , 24, 263-270	2.3	8
44	Progress in controlled polymerization and design of novel polymer architectures. <i>Macromolecular Symposia</i> , 1997 , 121, 53-74	0.8	8
43	Thermal Properties of the Homologous Series of 8-fold Alkyl-Substituted Octasilsesquioxanes. <i>Chemistry of Materials</i> , 1997 , 9, 1475-1479	9.6	103
42	Organopalladium-Functionalized Dendrimers: Insertion of Palladium(0) into Peripheral CarbonIbdine Bonds of Carbosilane Dendrimers Derived from Polyols. Crystal Structure of Si{(CH2)3O2CC6H4I-4}4. Organometallics, 1997, 16, 4167-4173	3.8	29
41	Carbosilane Dendrimers with Perfluoroalkyl End Groups. CoreBhell Macromolecules with Generation-Dependent Order. <i>Macromolecules</i> , 1997 , 30, 6860-6868	5.5	126
40			
,	Ethene and Propene Copolymers Containing Silsesquioxane Side Groups. <i>Macromolecules</i> , 1997 , 30, 28	31 §. 382	.4214
39	Ethene and Propene Copolymers Containing Silsesquioxane Side Groups. <i>Macromolecules</i> , 1997 , 30, 28 Degree of branching in hyperbranched polymers. <i>Acta Polymerica</i> , 1997 , 48, 30-35	31 8- 382	655
		31 & -382	,
39	Degree of branching in hyperbranched polymers. <i>Acta Polymerica</i> , 1997 , 48, 30-35	31 &-3 82 4.8	655
39	Degree of branching in hyperbranched polymers. <i>Acta Polymerica</i> , 1997 , 48, 30-35 Trends in polymer chemistry 1996. <i>Acta Polymerica</i> , 1997 , 48, 107-115 Hyperbranched polycarbosilane macromonomers bearing oxazoline functionalities. <i>Macromolecular</i>		655
39 38 37	Degree of branching in hyperbranched polymers. <i>Acta Polymerica</i> , 1997 , 48, 30-35 Trends in polymer chemistry 1996. <i>Acta Polymerica</i> , 1997 , 48, 107-115 Hyperbranched polycarbosilane macromonomers bearing oxazoline functionalities. <i>Macromolecular Rapid Communications</i> , 1997 , 18, 253-260 Molecular force field study concerning the host properties of carbosilane dendrimers.	4.8	655
39 38 37 36	Degree of branching in hyperbranched polymers. <i>Acta Polymerica</i> , 1997 , 48, 30-35 Trends in polymer chemistry 1996. <i>Acta Polymerica</i> , 1997 , 48, 107-115 Hyperbranched polycarbosilane macromonomers bearing oxazoline functionalities. <i>Macromolecular Rapid Communications</i> , 1997 , 18, 253-260 Molecular force field study concerning the host properties of carbosilane dendrimers. <i>Macromolecular Theory and Simulations</i> , 1997 , 6, 371-380 Charge Carrier Mobilities in Substituted Polysilylenes: Influence of Backbone Conformation. <i>The</i>	4.8	655 1 66 16

32	Synthesis and Photoinitiated Cationic Polymerization of 2-Methylene-7-phenyl-1,4,6,9-tetraoxaspiro[4.4]nonane. <i>Macromolecules</i> , 1996 , 29, 3111-3116	5.5	13
31	Synthesis of Poly(silylenemethylene)s Symmetrically Substituted with Alkyl Side Groups Containing 4B Carbon Atoms. <i>Macromolecules</i> , 1996 , 29, 3701-3706	5.5	31
30	Substrate-Induced Orientation of Poly(di-n-alkylsilylenes). <i>Langmuir</i> , 1996 , 12, 584-587	4	9
29	Miscibility of Poly(sila-⊞methylstyrene) with Polystyrene. <i>Macromolecules</i> , 1996 , 29, 1490-1497	5.5	6
28	Mono- and Multilayers of Mesogen-Substituted Carbosilane Dendrimers on Mica. <i>Macromolecules</i> , 1996 , 29, 8069-8076	5.5	69
27	Optical and charge transport properties of DI-n-hexyl substituted polysilylene and polygermylene. <i>Macromolecular Symposia</i> , 1996 , 102, 355-362	0.8	1
26	A mesogen-functionized carbosilane dendrimer: A dendritic liquid crystalline polymer. <i>Advanced Materials</i> , 1996 , 8, 414-416	24	163
25	Dendrimere Don der Ethetik zur Anwendung?. <i>Chemie in Unserer Zeit</i> , 1996 , 30, 75-85	0.2	19
24	Dendritic polyols based on carbosilanes - lipophilic dendrimers with hydrophilic skin. <i>Macromolecular Symposia</i> , 1996 , 102, 19-26	0.8	28
23	Synthesis and gel formation of amphiphilic semicarbazones containing saccharide units. <i>Colloid and Polymer Science</i> , 1995 , 273, 661-674	2.4	4
22	Photoinitiated cationic polymerization of 2-phenylsubstituted 4-methylene-1,3-dioxolanes. <i>Journal of Polymer Science Part A</i> , 1995 , 33, 587-592	2.5	11
21	Fullerene-End-Capped Polystyrenes. Monosubstituted Polymeric C60 Derivatives. <i>Macromolecules</i> , 1995 , 28, 403-405	5.5	83
20	Carbosilane-Based Dendritic Polyols. <i>Macromolecules</i> , 1995 , 28, 6657-6661	5.5	102
19	Structure and Chiroptical Properties of Bis[(S)-methylbutyl]silylene-Dipentylsilylene Copolymers. <i>Macromolecules</i> , 1995 , 28, 5498-5506	5.5	27
18	Charge carrier mobilities in liquid crystalline mesomorphic poly(DI-n-Alkylsilylene)s; influence of backbone conformation. <i>Macromolecular Symposia</i> , 1995 , 96, 219-228	0.8	1
17	Polysilylenes with ethynylphenyl substituents. <i>Acta Polymerica</i> , 1995 , 46, 45-49		2
16	Hydrosilylation of 1-alkenes with dichlorosilane. <i>Macromolecular Chemistry and Physics</i> , 1995 , 196, 185-1	19.46	8
15	Crystalline and disordered state of poly(dihexylsilylene) copolymers. <i>Macromolecular Chemistry and Physics</i> , 1995 , 196, 1181-1194	2.6	2

14	Synthesis and mesomorphic behavior of poly(dipropylsilylenemethylene). <i>Macromolecular Rapid Communications</i> , 1995 , 16, 363-372	4.8	14
13	Chiral Poly(dipentylsilylene) Copolymers. <i>Macromolecules</i> , 1994 , 27, 1814-1818	5.5	51
12	Anisotropic Radiation-Induced Conductivity in Oriented Poly(di-n-hexylsilylene) in the Solid Phase and in the Mesophase. <i>Macromolecules</i> , 1994 , 27, 1897-1904	5.5	30
11	Synthesis and properties of poly[bis(.gammaethoxypropyl)silylene]. <i>Macromolecules</i> , 1993 , 26, 6231-62	2 <u>3.6</u>	15
10	Highly oriented poly(di-n-alkylsilylene) films on oriented PTFE substrates. <i>Advanced Materials</i> , 1993 , 5, 917-919	24	27
9	Blending, geldrawing and UV-photolysis of ultrahigh molecular weight polyethylene and poly(di-n-pentylsilylene). <i>Colloid and Polymer Science</i> , 1993 , 271, 554-562	2.4	12
8	Radiation-induced conductivity in poly(methylphenylsilylene) and poly(di-n-hexylsilylene) studied by time-resolved microwave conductivity. <i>Macromolecules</i> , 1993 , 26, 89-93	5.5	30
7	FT-IR studies on the mechanical response of the crystalline fraction in ultrastrong polyethylene tapes. <i>Colloid and Polymer Science</i> , 1992 , 270, 440-445	2.4	7
6	Crystallization and mesomorphic disordering of di-n-hexylsilylene/di-n-pentylsilylene copolymers. <i>Colloid and Polymer Science</i> , 1991 , 269, 442-448	2.4	13
5	Order and thermochromism of poly(di-n-alkyl)silane copolymers. <i>Synthetic Metals</i> , 1991 , 42, 1571-1574	3.6	1
4	Synthesis and Characterization of Polysilanes. <i>Journal of Macromolecular Science Part A, Chemistry</i> , 1991 , 28, 1151-1176		32
3	Introducing a 1,1-diphenylethylene analogue for vinylpyridine: anionic copolymerisation of 3-(1-phenylvinyl)pyridine (m-PyPE). <i>Polymer Chemistry</i> ,	4.9	1
2	Phase Diagram of Tapered Copolymers Based on Isoprene and Styrene. <i>Macromolecular Chemistry and Physics</i> ,2200033	2.6	2
1	Polyethers Based on Short-Chain Alkyl Glycidyl Ethers: Thermoresponsive and Highly Biocompatible Materials. <i>Biomacromolecules</i> ,	6.9	Ο