
Xinjing Dou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7141149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mass spectrometry in food authentication and origin traceability. Mass Spectrometry Reviews, 2023, 42, 1772-1807.	5.4	16
2	Adulteration detection of essence in sesame oil based on headspace gas chromatography-ion mobility spectrometry. Food Chemistry, 2022, 370, 131373.	8.2	29
3	Comparative analysis of free/combined phytosterolsdegradation and differential formation of oxidation products during heating of sunflower seed oil. LWT - Food Science and Technology, 2022, 155, 112966.	5.2	6
4	Quantitative analysis of metabolites in the aflatoxin biosynthesis pathway for early warning of aflatoxin contamination by UHPLC-HRMS combined with QAMS. Journal of Hazardous Materials, 2022, 431, 128531.	12.4	17
5	Fullerenol Quantum Dots-Based Highly Sensitive Fluorescence Aptasensor for Patulin in Apple Juice. Toxins, 2022, 14, 272.	3.4	5
6	Simultaneous Determination of Aflatoxins and Benzo(a)pyrene in Vegetable Oils Using Humic Acid-Bonded Silica SPE HPLC–PHRED–FLD. Toxins, 2022, 14, 352.	3.4	8
7	Ultrasensitive biosensing platform based on luminescence quenching ability of fullerenol quantum dots. RSC Advances, 2021, 11, 19690-19694.	3.6	2
8	Simultaneous Quantification of Trace and Micro Phenolic Compounds by Liquid Chromatography Tandem-Mass Spectrometry. Metabolites, 2021, 11, 589.	2.9	4
9	Rapid authentication of sesame oil using ion mobility spectrometry and chemometrics. Oil Crop Science, 2020, 5, 161-165.	2.0	8
10	Extraction and Quantification of Sulforaphane and Indole-3-Carbinol from Rapeseed Tissues Using QuEChERS Coupled with UHPLC-MS/MS. Molecules, 2020, 25, 2149.	3.8	11
11	Review of NIR spectroscopy methods for nondestructive quality analysis of oilseeds and edible oils. Trends in Food Science and Technology, 2020, 101, 172-181.	15.1	73
12	Detection of flaxseed oil multiple adulteration by near-infrared spectroscopy and nonlinear one class partial least squares discriminant analysis. LWT - Food Science and Technology, 2020, 125, 109247.	5.2	39
13	Identification and Validation of Metabolic Markers for Adulteration Detection of Edible Oils Using Metabolic Networks. Metabolites, 2020, 10, 85.	2.9	7
14	Extraction and Determination of Vitamin K1 in Foods by Ultrasound-Assisted Extraction, SPE, and LC-MS/MS. Molecules, 2020, 25, 839.	3.8	7
15	Optimization of Headspace SPME GC × GC-TOF/MS Analysis of Volatile Organic Compounds in Edible Oils by Central Composite Design for Adulteration Detection of Edible Oil. Food Analytical Methods, 2020, 13, 1328-1336.	2.6	16
16	Phytosterol Contents of Edible Oils and Their Contributions to Estimated Phytosterol Intake in the Chinese Diet. Foods, 2019, 8, 334.	4.3	117
17	Determination of Aflatoxin B1 and B2 in Vegetable Oils Using Fe3O4/rGO Magnetic Solid Phase Extraction Coupled with High-Performance Liquid Chromatography Fluorescence with Post-Column Photochemical Derivatization. Toxins, 2019, 11, 621.	3.4	38
18	Optimization of an Ultrasound-Assisted Extraction for Simultaneous Determination of Antioxidants in Sesame with Response Surface Methodology. Antioxidants, 2019, 8, 321.	5.1	10

Xinjing Dou

#	Article	IF	CITATIONS
19	Comparative Metabolomic Analysis of Rapeseeds from Three Countries. Metabolites, 2019, 9, 161.	2.9	15
20	Insights into photocatalytic inactivation mechanism of the hypertoxic site in aflatoxin B1 over clew-like WO3 decorated with CdS nanoparticles. Applied Catalysis B: Environmental, 2019, 248, 477-486.	20.2	67
21	Simultaneous determination of tocopherols, carotenoids and phytosterols in edible vegetable oil by ultrasound-assisted saponification, LLE and LC-MS/MS. Food Chemistry, 2019, 289, 313-319.	8.2	78
22	Simultaneous determination of 19 phenolic compounds in oilseeds using magnetic solid phase extraction and LC-MS/MS. LWT - Food Science and Technology, 2019, 107, 221-227.	5.2	20
23	Photocatalytic degradation of deoxynivalenol over dendritic-like α-Fe2O3 under visible light irradiation. Toxins, 2019, 11, 105.	3.4	39
24	Effect of Chlorophyll on Lipid Oxidation of Rapeseed Oil. European Journal of Lipid Science and Technology, 2019, 121, 1800078.	1.5	19
25	Facile fabrication of nanosized graphitic carbon nitride sheets with efficient charge separation for mitigation of toxic pollutant. Chemical Engineering Journal, 2018, 342, 30-40.	12.7	47
26	A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends in Food Science and Technology, 2018, 74, 26-32.	15.1	161
27	Determination of free steroidal compounds in vegetable oils by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Food Chemistry, 2018, 245, 415-425.	8.2	43
28	Geometric architecture design of ternary composites based on dispersive WO3 nanowires for enhanced visible-light-driven activity of refractory pollutant degradation. Chemical Engineering Journal, 2018, 334, 2568-2578.	12.7	34
29	Monitoring Metabolite Production of Aflatoxin Biosynthesis by Orbitrap Fusion Mass Spectrometry and a D-Optimal Mixture Design Method. Analytical Chemistry, 2018, 90, 14331-14338.	6.5	24
30	Evaluation and comparison of in vitro antioxidant activities of unsaponifiable fraction of 11 kinds of edible vegetable oils. Food Science and Nutrition, 2018, 6, 2355-2362.	3.4	8
31	Multispecies Adulteration Detection of Camellia Oil by Chemical Markers. Molecules, 2018, 23, 241.	3.8	21
32	Identification of Nutritional Components in Black Sesame Determined by Widely Targeted Metabolomics and Traditional Chinese Medicines. Molecules, 2018, 23, 1180.	3.8	87
33	Relational variable for more accurate prediction of models. Chemometrics and Intelligent Laboratory Systems, 2018, 180, 84-87.	3.5	1
34	Targeted multivariate adulteration detection based on fatty acid profiles and Monte Carlo one-class partial least squares. Chemometrics and Intelligent Laboratory Systems, 2017, 169, 94-99.	3.5	18
35	Multivariate adulteration detection for sesame oil. Chemometrics and Intelligent Laboratory Systems, 2017, 161, 147-150.	3.5	28
36	A Structure Identification and Toxicity Assessment of the Degradation Products of Aflatoxin B1 in Peanut Oil under UV Irradiation. Toxins, 2016, 8, 332.	3.4	106

XINJING DOU

#	Article	IF	CITATIONS
37	Simultaneous determination of phenolic compounds in sesame oil using LC–MS/MS combined with magnetic carboxylated multi-walled carbon nanotubes. Food Chemistry, 2016, 204, 334-342.	8.2	63
38	Ion mobility spectrometry fingerprints: A rapid detection technology for adulteration of sesame oil. Food Chemistry, 2016, 192, 60-66.	8.2	97
39	Development and validation of a gas chromatography-mass spectrometry method for determination of sterol oxidation products in edible oils. RSC Advances, 2015, 5, 41259-41268.	3.6	26
40	Rapid determination of trans-resveratrol in vegetable oils using magnetic hydrophilic multi-walled carbon nanotubes as adsorbents followed by liquid chromatography–tandem mass spectrometry. Food Chemistry, 2015, 178, 259-266.	8.2	30
41	Fatty acid profiles based adulteration detection for flaxseed oil by gas chromatography mass spectrometry. LWT - Food Science and Technology, 2015, 63, 430-436.	5.2	59
42	Simultaneous determination of isoflavones and resveratrols for adulteration detection of soybean and peanut oils by mixed-mode SPE LC–MS/MS. Food Chemistry, 2015, 176, 465-471.	8.2	41
43	One-class classification based authentication of peanut oils by fatty acid profiles. RSC Advances, 2015, 5, 85046-85051.	3.6	28
44	Rapid adulteration detection for flaxseed oil using ion mobility spectrometry and chemometric methods. Analytical Methods, 2014, 6, 9575-9580.	2.7	29
45	Characterization and authentication of four important edible oils using free phytosterol profiles established by GC-GC-TOF/MS. Analytical Methods, 2014, 6, 6860-6870.	2.7	48
46	Characterization of volatile components in four vegetable oils by headspace two-dimensional comprehensive chromatography time-of-flight mass spectrometry. Talanta, 2014, 129, 629-635.	5.5	55
47	Classification and Adulteration Detection of Vegetable Oils Based on Fatty Acid Profiles. Journal of Agricultural and Food Chemistry, 2014, 62, 8745-8751.	5.2	116
48	Untargeted fatty acid profiles based on the selected ion monitoring mode. Analytica Chimica Acta, 2014, 839, 44-50.	5.4	23
49	Contribution of Tocopherols in Commonly Consumed Foods to Estimated Tocopherol Intake in the Chinese Diet. Frontiers in Nutrition, 0, 9, .	3.7	3