Weiran Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7140863/publications.pdf

Version: 2024-02-01

257450 289244 2,224 39 24 40 citations g-index h-index papers 43 43 43 2976 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Beyond sonication: Advanced exfoliation methods for scalable production of 2D materials. Matter, 2022, 5, 515-545.	10.0	33
2	Bismuth and metal-doped bismuth nanoparticles produced by laser ablation for electrochemical glucose sensing. Sensors and Actuators B: Chemical, 2022, 357, 131334.	7.8	11
3	Observing Electrocatalytic Processes via <i>In Situ</i> Electrochemical Scanning Tunneling Microscopy: Latest Advances. Chemistry - an Asian Journal, 2022, 17, .	3.3	9
4	Front Cover: Observing Electrocatalytic Processes via <i>In Situ</i> Electrochemical Scanning Tunneling Microscopy: Latest Advances (Chem. Asian J. 15/2022). Chemistry - an Asian Journal, 2022, 17, .	3.3	1
5	Fewâ€Layer Tellurium: Cathodic Exfoliation and Doping for Collaborative Hydrogen Evolution. Small, 2021, 17, e2007768.	10.0	8
6	Stabilizer-free bismuth nanoparticles for selective polyol electrooxidation. IScience, 2021, 24, 102342.	4.1	8
7	Interface Engineering of a 2D-C ₃ N ₄ /NiFe-LDH Heterostructure for Highly Efficient Photocatalytic Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2021, 13, 24723-24733.	8.0	54
8	Interface engineered NiFe2O4â^'x/NiMoO4 nanowire arrays for electrochemical oxygen evolution. Applied Catalysis B: Environmental, 2021, 286, 119857.	20.2	138
9	Metal–Organic Frameworks for Electrocatalysis: Catalyst or Precatalyst?. ACS Energy Letters, 2021, 6, 2838-2843.	17.4	171
10	TiO2 film supported by vertically aligned gold nanorod superlattice array for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 417, 127900.	12.7	23
11	Improving the performance stability of direct seawater electrolysis: from catalyst design to electrode engineering. Nanoscale, 2021, 13, 15177-15187.	5 . 6	48
12	Electrochemical Instability of Metal–Organic Frameworks: In Situ Spectroelectrochemical Investigation of the Real Active Sites. ACS Catalysis, 2020, 10, 81-92.	11.2	248
13	Best Practices in Using Foam-Type Electrodes for Electrocatalytic Performance Benchmark. ACS Energy Letters, 2020, 5, 3260-3264.	17.4	112
14	Blue ordered/disordered Janus-type TiO ₂ nanoparticles for enhanced photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2020, 8, 22828-22839.	10.3	24
15	Copper phosphosulfides as a highly active and stable photocatalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 273, 118927.	20.2	28
16	Laserâ€Assisted Ultrafast Exfoliation of Black Phosphorus in Liquid with Tunable Thickness for Li″on Batteries. Advanced Energy Materials, 2020, 10, 1903490.	19.5	39
17	(Invited) Laser-Assisted Exfoliation of Black Phosphorus with Thickness Control for Li-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 349-349.	0.0	0
18	Highly Enhanced Pseudocapacitive Performance of Vanadiumâ€Doped MXenes in Neutral Electrolytes. Small, 2019, 15, e1902649.	10.0	46

#	Article	IF	CITATIONS
19	Surface Engineering of MoS ₂ via Laserâ€Induced Exfoliation in Protic Solvents. Small, 2019, 15, e1903791.	10.0	28
20	Highly efficient stepwise electrochemical degradation of antibiotics in water by in situ formed Cu(OH)2 nanowires. Applied Catalysis B: Environmental, 2019, 256, 117824.	20.2	15
21	Insights into the transition metal ion-mediated electrooxidation of glucose in alkaline electrolyte. Electrochimica Acta, 2019, 308, 9-19.	5.2	25
22	Use of carbon supports with copper ion as a highly sensitive non-enzymatic glucose sensor. Sensors and Actuators B: Chemical, 2019, 282, 187-196.	7.8	33
23	Two-dimensional metal-organic framework and covalent-organic framework: synthesis and their energy-related applications. Materials Today Chemistry, 2019, 12, 34-60.	3.5	105
24	Cu ²⁺ â€doped Carbon Nitride/MWCNT as an Electrochemical Glucose Sensor. Electroanalysis, 2018, 30, 1446-1454.	2.9	25
25	Water-Splitting: Overall Water-Splitting Electrocatalysts Based on 2D CoNi-Metal-Organic Frameworks and Its Derivative (Adv. Mater. Interfaces 21/2018). Advanced Materials Interfaces, 2018, 5, 1870106.	3.7	1
26	Overall Waterâ€Splitting Electrocatalysts Based on 2D CoNiâ€Metalâ€Organic Frameworks and Its Derivative. Advanced Materials Interfaces, 2018, 5, 1800849.	3.7	66
27	Ni/Co-based nanosheet arrays for efficient oxygen evolution reaction. Nano Energy, 2018, 52, 360-368.	16.0	135
28	Electroreduction of Carbon Dioxide to Formic Acid and Methanol over a Palladium/Polyaniline Catalyst in Acidic Solution: A Study of the Palladium Size Effect. Energy Technology, 2017, 5, 937-944.	3.8	18
29	Quantitative Differences in Sulfur Poisoning Phenomena over Ruthenium and Palladium: An Attempt To Deconvolute Geometric and Electronic Poisoning Effects Using Model Catalysts. ACS Catalysis, 2017, 7, 592-605.	11.2	34
30	Cu ^{II} â€Mediated Ultraâ€efficient Electrooxidation of Glucose. ChemElectroChem, 2017, 4, 2788-2792.	3.4	20
31	Copper nanoparticles/polyaniline/graphene composite as a highly sensitive electrochemical glucose sensor. Journal of Electroanalytical Chemistry, 2016, 781, 155-160.	3.8	92
32	A tunable metal–polyaniline interface for efficient carbon dioxide electro-reduction to formic acid and methanol in aqueous solution. Chemical Communications, 2016, 52, 13901-13904.	4.1	36
33	Probing the Size and Shape Effects of Cubic―and Spherical‧haped Palladium Nanoparticles in the Electrooxidation of Formic Acid. ChemCatChem, 2015, 7, 3826-3831.	3.7	15
34	Dual doping effects (site blockage and electronic promotion) imposed by adatoms on Pd nanocrystals for catalytic hydrogen production. Chemical Communications, 2015, 51, 46-49.	4.1	17
35	Enhanced photocatalytic hydrogen evolution from water by niobate single molecular sheets and ensembles. Chemical Communications, 2014, 50, 13702-13705.	4.1	37
36	Photo and electronic excitation for low temperature catalysis over metal nanoparticles using an organic semiconductor. RSC Advances, 2014, 4, 47488-47496.	3.6	6

#	Article	IF	CITATIONS
37	Palladium on iron oxide nanoparticles: the morphological effect of the support in glycerol hydrogenolysis. Green Chemistry, 2013, 15, 2064.	9.0	25
38	Morphologyâ€Dependent Interactions of ZnO with Cu Nanoparticles at the Materials' Interface in Selective Hydrogenation of CO ₂ to CH ₃ OH. Angewandte Chemie - International Edition, 2011, 50, 2162-2165.	13.8	359
39	Temperature and Solvent-Dependent Morphological Sol Gel Transformation: An in Situ microscopic observation. Langmuir, 2010, 26, 3106-3114.	3.5	22