
Huanzhen Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7140809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flower-like Co3O4 Catalysts for Efficient Catalytic Oxidation of Multi-Pollutants from Diesel Exhaust. Catalysts, 2022, 12, 527.	3.5	2
2	Interaction between Nickel Oxide and Support Promotes Selective Catalytic Reduction of NO _{<i>x</i>} with C ₃ H ₆ . Chemistry - an Asian Journal, 2022, 17, .	3.3	3
3	Improvement of NH3 resistance over CuO/TiO2 catalysts for elemental mercury oxidation in a wide temperature range. Catalysis Today, 2021, 376, 276-284.	4.4	12
4	Selective Catalytic Reduction of N2O by CO over Fe-Beta Zeolites Catalysts: Influence of Iron Species Distribution. Catalysis Surveys From Asia, 2021, 25, 58-67.	2.6	8
5	Electronic metal-support interactions in Pt/FeO nanospheres for CO oxidation. Catalysis Today, 2020, 355, 539-546.	4.4	23
6	Low-temperature selective catalytic reduction of N2O by CO over Fe-ZSM-5 catalysts in the presence of O2. Journal of Hazardous Materials, 2020, 383, 121117.	12.4	46
7	Promotional Effect of Preparation Methods on Catalytic Reduction of NO by CO over CoCeO _{<i>x</i>} Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 34-41.	3.7	22
8	Simultaneous Selective Catalytic Reduction of NO and N ₂ O by NH ₃ over Fe-Zeolite Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 19500-19509.	3.7	17
9	Novel Methods for Assessing the SO ₂ Poisoning Effect and Thermal Regeneration Possibility of MO _{<i>x</i>} –WO ₃ /TiO ₂ (M = Fe, Mn, Cu, and V) Catalysts for NH ₃ -SCR. Environmental Science & Technology, 2020, 54, 12612-12620.	10.0	69
10	Estimation of abatement potentials and costs of air pollution emissions in China. Journal of Environmental Management, 2020, 260, 110069.	7.8	33
11	Catalytic oxidation of CO over Pt/Fe3O4 catalysts: Tuning O2 activation and CO adsorption. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	6.0	21
12	Chemical deactivation of Selective Catalytic Reduction catalyst: Investigating the influence and mechanism of SeO2 poisoning. Fuel, 2020, 269, 117435.	6.4	16
13	Effect of Fe precursors on the catalytic activity of Fe/SAPO-34 catalysts for N2O decomposition. Catalysis Communications, 2019, 128, 105706.	3.3	16
14	Cu/SAPO-34 prepared by a facile ball milling method for enhanced catalytic performance in the selective catalytic reduction of NO _x with NH ₃ . Physical Chemistry Chemical Physics, 2019, 21, 22113-22120.	2.8	15
15	Heterogeneous activation of persulfate by Co3O4-CeO2 catalyst for diclofenac removal. Journal of Environmental Management, 2019, 234, 265-272.	7.8	88
16	Enhancement of N2O decomposition performance by N2O pretreatment over Ce-Co-O catalyst. Chemical Engineering Journal, 2018, 347, 184-192.	12.7	61
17	Structural requirements of manganese oxides for methane oxidation: XAS spectroscopy and transition-state studies. Applied Catalysis B: Environmental, 2018, 229, 52-62.	20.2	57
18	Improved Activity and H ₂ 0 Resistance of Cu-Modified MnO ₂ Catalysts for NO Oxidation. Industrial & Engineering Chemistry Research, 2018, 57, 920-926.	3.7	26

HUANZHEN CHANG

#	Article	IF	CITATIONS
19	Excellent Activity and Selectivity of One-Pot Synthesized Cu–SSZ-13 Catalyst in the Selective Catalytic Oxidation of Ammonia to Nitrogen. Environmental Science & Technology, 2018, 52, 4802-4808.	10.0	95
20	The promoting effects of amorphous CePO 4 species on phosphorus-doped CeO 2 /TiO 2 catalysts for selective catalytic reduction of NO x by NH 3. Molecular Catalysis, 2018, 453, 47-54.	2.0	41
21	New Insight into SO ₂ Poisoning and Regeneration of CeO ₂ –WO ₃ /TiO ₂ and V ₂ O ₅ –WO ₃ /TiO ₂ Catalysts for Low-Temperature NH ₃ –SCR. Environmental Science &: Technology, 2018, 52, 7064-7071.	10.0	236
22	Different exposed facets VO /CeO2 catalysts for the selective catalytic reduction of NO with NH3. Chemical Engineering Journal, 2018, 349, 184-191.	12.7	86
23	The effect of cations (NH4+, Na+, K+, and Ca2+) on chemical deactivation of commercial SCR catalyst by bromides. Chinese Journal of Catalysis, 2018, 39, 710-717.	14.0	34
24	Fe ₂ O ₃ @SiTi core–shell catalyst for the selective catalytic reduction of NO _x with NH ₃ : activity improvement and HCl tolerance. Catalysis Science and Technology, 2018, 8, 3313-3320.	4.1	36
25	Preparation of a magnetic N-Fe/AC catalyst for aqueous pharmaceutical treatment in heterogeneous sonication system. Journal of Environmental Management, 2017, 187, 201-211.	7.8	11
26	NiFe(C2O4)x as a heterogeneous Fenton catalyst for removal of methyl orange. Journal of Environmental Management, 2017, 192, 150-155.	7.8	25
27	The poisoning effects of phosphorus on CeO2-MoO3/TiO2 DeNO catalysts: NH3-SCR activity and the formation of N2O. Molecular Catalysis, 2017, 439, 15-24.	2.0	27
28	Diclofenac degradation in water by FeCeO x catalyzed H 2 O 2 : Influencing factors, mechanism and pathways. Journal of Hazardous Materials, 2017, 334, 150-159.	12.4	98
29	Design strategies of surface basicity for NO oxidation over a novel Sn–Co–O catalyst in the presence of H2O. Catalysis Science and Technology, 2017, 7, 2057-2064.	4.1	14
30	Novel Fe-Ce-O mixed metal oxides catalyst prepared by hydrothermal method for HgO oxidation in the presence of NH3. Catalysis Communications, 2017, 100, 210-213.	3.3	29
31	Novel W-modified SnMnCeO catalyst for the selective catalytic reduction of NO with NH3. Catalysis Communications, 2017, 100, 117-120.	3.3	19
32	Effect of Ceria Precursor on the Physicochemical and Catalytic Properties of Mn–W/CeO ₂ Nanocatalysts for NH ₃ SCR at Low Temperature. Industrial & Engineering Chemistry Research, 2017, 56, 14980-14994.	3.7	29
33	Surface Tuning of La _{0.5} Sr _{0.5} CoO ₃ Perovskite Catalysts by Acetic Acid for NO _{<i>x</i>} Storage and Reduction. Environmental Science & amp; Technology, 2016, 50, 6442-6448.	10.0	108
34	Identification of active sites and reaction mechanism on low-temperature SCR activity over Cu-SSZ-13 catalysts prepared by different methods. Catalysis Science and Technology, 2016, 6, 6294-6304.	4.1	81
35	Chemical poison and regeneration of SCR catalysts for NO x removal from stationary sources. Frontiers of Environmental Science and Engineering, 2016, 10, 413-427.	6.0	100
36	Mechanism of arsenic poisoning on SCR catalyst of CeW/Ti and its novel efficient regeneration method with hydrogen. Applied Catalysis B: Environmental, 2016, 184, 246-257.	20.2	149

HUANZHEN CHANG

#	Article	IF	CITATIONS
37	Lean NO –SnO2–CeO2 catalyst at low temperatures. Catalysis Today, 2015, 258, 556-563.	4.4	6
38	The outstanding performance of LDH-derived mixed oxide Mn/CoAlO _x for Hg ⁰ oxidation. Catalysis Science and Technology, 2015, 5, 3536-3544.	4.1	27
39	Design Strategies for CeO ₂ –MoO ₃ Catalysts for DeNO _{<i>x</i>} and Hg ⁰ Oxidation in the Presence of HCI: The Significance of the Surface Acid–Base Properties. Environmental Science & Technology, 2015, 49, 12388-12394.	10.0	81
40	Reaction Pathway Investigation on the Selective Catalytic Reduction of NO with NH ₃ over Cu/SSZ-13 at Low Temperatures. Environmental Science & Technology, 2015, 49, 467-473.	10.0	87
41	Effects of noble metals doped on mesoporous <scp>LaAlNi</scp> mixed oxide catalyst and identification of carbon deposit for reforming <scp>CH₄</scp> with <scp>CO₂</scp> . Journal of Chemical Technology and Biotechnology, 2014, 89, 372-381.	3.2	51
42	A novel mechanism for poisoning of metal oxide SCR catalysts: base–acid explanation correlated with redox properties. Chemical Communications, 2014, 50, 10031-10034.	4.1	59
43	Characterization of CeO2–WO3 catalysts prepared by different methods for selective catalytic reduction of NO with NH3. Catalysis Communications, 2013, 40, 145-148.	3.3	61
44	Design Strategies for P-Containing Fuels Adaptable CeO ₂ –MoO ₃ Catalysts for DeNO _{<i>x</i>} : Significance of Phosphorus Resistance and N ₂ Selectivity. Environmental Science & Technology, 2013, 47, 11692-11699.	10.0	77
45	Dispersion of tungsten oxide on SCR performance of V2O5WO3/TiO2: Acidity, surface species and catalytic activity. Chemical Engineering Journal, 2013, 225, 520-527.	12.7	177
46	Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR. Journal of Hazardous Materials, 2013, 262, 782-788.	12.4	90
47	Low temperature complete combustion of methane over cobalt chromium oxides catalysts. Catalysis Today, 2013, 201, 12-18.	4.4	100
48	Ge, Mn-doped CeO2–WO3 catalysts for NH3–SCR of NOx: Effects of SO2 and H2 regeneration. Catalysis Today, 2013, 201, 139-144.	4.4	89
49	Structural effects of iron spinel oxides doped with Mn, Co, Ni and Zn on selective catalytic reduction of NO with NH3. Journal of Molecular Catalysis A, 2013, 376, 13-21.	4.8	68
50	Dextrose-aided hydrothermal preparation with large surface area on 1D single-crystalline perovskite La0.5Sr0.5CoO3 nanowires without template: Highly catalytic activity for methane combustion. Journal of Molecular Catalysis A, 2013, 378, 299-306.	4.8	56
51	Improvement of the Activity of γ-Fe ₂ O ₃ for the Selective Catalytic Reduction of NO with NH ₃ at High Temperatures: NO Reduction versus NH ₃ Oxidization. Industrial & Engineering Chemistry Research, 2013, 52, 5601-5610.	3.7	118
52	Novel effect of SO2 on the SCR reaction over CeO2: Mechanism and significance. Applied Catalysis B: Environmental, 2013, 136-137, 19-28.	20.2	312
53	Comparison on the Performance of α-Fe2O3 and γ-Fe2O3 for Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. Catalysis Letters, 2013, 143, 697-704.	2.6	101
54	Improvement of Activity and SO ₂ Tolerance of Sn-Modified MnO _{<i>x</i>} –CeO ₂ Catalysts for NH ₃ -SCR at Low Temperatures. Environmental Science & Technology, 2013, 47, 5294-5301.	10.0	378

HUANZHEN CHANG

#	Article	IF	CITATIONS
55	Substitution of WO ₃ in V ₂ O ₅ /WO ₃ –TiO ₂ by Fe ₂ O ₃ for selective catalytic reduction of NO with NH3. Catalysis Science and Technology, 2013, 3, 161-168.	4.1	90
56	Effect of Sn on MnO –CeO2 catalyst for SCR of NO by ammonia: Enhancement of activity and remarkable resistance to SO2. Catalysis Communications, 2012, 27, 54-57.	3.3	155
57	Relations between iron sites and performance of Fe/HBEA catalysts prepared by two different methods for NH3-SCR. Chemical Engineering Journal, 2012, 209, 652-660.	12.7	46
58	Methane reforming to syngas over LaNixFe1â^'xO3 (0≤â‰⊉) mixed-oxide perovskites in the presence of CO2 and O2. Journal of Industrial and Engineering Chemistry, 2012, 18, 2103-2114.	5.8	101
59	A novel magnetic Fe–Ti–V spinel catalyst for the selective catalytic reduction of NO with NH3 in a broad temperature range. Catalysis Science and Technology, 2012, 2, 915.	4.1	53
60	Fe–Ti spinel for the selective catalytic reduction of NO with NH3: Mechanism and structure–activity relationship. Applied Catalysis B: Environmental, 2012, 117-118, 73-80.	20.2	178
61	Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catalysis Today, 2011, 175, 147-156.	4.4	811
62	CeO2–WO3 Mixed Oxides for the Selective Catalytic Reduction of NO x by NH3 Over a Wide Temperature Range. Catalysis Letters, 2011, 141, 1859-1864.	2.6	132
63	Mechanism of Selective Catalytic Reduction of NOx with NH3 over CeO2-WO3 Catalysts. Chinese Journal of Catalysis, 2011, 32, 836-841.	14.0	82