Emanuela Gussoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7140691/publications.pdf

Version: 2024-02-01

54 papers

6,921 citations

30 h-index 53 g-index

54 all docs

54 docs citations

times ranked

54

5922 citing authors

#	Article	IF	CITATIONS
1	Lysine methyltransferase 2D regulates muscle fiber size and muscle cell differentiation. FASEB Journal, 2021, 35, e21955.	0.2	8
2	Tetraspanin CD82 is necessary for muscle stem cell activation and supports dystrophic muscle function. Skeletal Muscle, 2020, 10, 34.	1.9	9
3	Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage <i>in vitro</i> . Development (Cambridge), 2020, 147, .	1.2	37
4	Purification of Myogenic Progenitors from Human Muscle Using Fluorescence-Activated Cell Sorting (FACS). Methods in Molecular Biology, 2019, 1889, 1-15.	0.4	13
5	Building immune tolerance through DNA vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9652-9654.	3.3	5
6	Exosomal Small Talk Carries Strong Messages from Muscle Stem Cells. Cell Stem Cell, 2017, 20, 1-3.	5.2	30
7	Isolation of Primary Human Skeletal Muscle Cells. Bio-protocol, 2017, 7, .	0.2	29
8	A defect in the inner kinetochore protein CENPT causes a new syndrome of severe growth failure. PLoS ONE, 2017, 12, e0189324.	1,1	8
9	CD82 Is a Marker for Prospective Isolation of Human Muscle Satellite Cells and Is Linked to Muscular Dystrophies. Cell Stem Cell, 2016, 19, 800-807.	5.2	97
10	Isolation and Immortalization of Patient-derived Cell Lines from Muscle Biopsy for Disease Modeling. Journal of Visualized Experiments, 2015, , 52307.	0.2	8
11	Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nature Biotechnology, 2015, 33, 962-969.	9.4	339
12	POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Human Molecular Genetics, 2014, 23, 5781-5792.	1.4	72
13	Intramuscular adipogenesis is inhibited by myo-endothelial progenitors with functioning Bmpr1a signalling. Nature Communications, 2014, 5, 4063.	5.8	36
14	Fam65b is important for formation of the HDAC6â€dysferlin protein complex during myogenic cell differentiation. FASEB Journal, 2014, 28, 2955-2969.	0.2	23
15	Mouse Regenerating Myofibers Detected as False-Positive Donor Myofibers with Anti-Human Spectrin. Human Gene Therapy, 2014, 25, 73-81.	1.4	13
16	Tissue Triage and Freezing for Models of Skeletal Muscle Disease. Journal of Visualized Experiments, 2014, , .	0.2	48
17	Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature, 2013, 495, 379-383.	13.7	338
18	Gâ€protein coupled receptor 56 promotes myoblast fusion through serum response factor―and nuclear factor of activated Tâ€cellâ€mediated signalling but is not essential for muscle development <i>inÂvivo</i> . FEBS Journal, 2013, 280, 6097-6113.	2.2	39

#	Article	IF	Citations
19	Human fetal skeletal muscle contains a myogenic side population that expresses the melanoma cell-adhesion molecule. Human Molecular Genetics, 2012, 21, 3668-3680.	1.4	17
20	\hat{l}^24 Integrin Marks Interstitial Myogenic Progenitor Cells in Adult Murine Skeletal Muscle. Journal of Histochemistry and Cytochemistry, 2012, 60, 31-44.	1.3	27
21	Myotubularin-Deficient Myoblasts Display Increased Apoptosis, Delayed Proliferation, and Poor Cell Engraftment. American Journal of Pathology, 2012, 181, 961-968.	1.9	37
22	Isolation and Characterization of Human Fetal Myoblasts. Methods in Molecular Biology, 2012, 798, 3-19.	0.4	20
23	Carbamylated erythropoietin does not alleviate signs of dystrophy in <i>mdx</i> mice. Muscle and Nerve, 2011, 43, 88-93.	1.0	4
24	Inefficient dystrophin expression after cord blood transplantation in Duchenne muscular dystrophy. Muscle and Nerve, 2010, 41, 746-750.	1.0	21
25	A role for nephrin, a renal protein, in vertebrate skeletal muscle cell fusion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9274-9279.	3.3	90
26	Bone marrow side population cells are enriched for progenitors capable of myogenic differentiation. Journal of Cell Science, 2008, 121, 1426-1434.	1.2	27
27	C6ORF32 is upregulated during muscle cell differentiation and induces the formation of cellular filopodia. Developmental Biology, 2007, 301, 70-81.	0.9	41
28	Myogenic reprogramming of retina-derived cells following their spontaneous fusion with myotubes. Developmental Biology, 2007, 311, 449-463.	0.9	27
29	Stem and Progenitor Cells in Skeletal Muscle Development, Maintenance, and Therapy. Molecular Therapy, 2007, 15, 867-877.	3.7	522
30	Regulation of myogenic progenitor proliferation in human fetal skeletal muscle by BMP4 and its antagonist Gremlin. Journal of Cell Biology, 2006, 175, 99-110.	2.3	61
31	Melanoma cell adhesion molecule is a novel marker for human fetal myogenic cells and affects myoblast fusion. Journal of Cell Science, 2006, 119, 3117-3127.	1.2	34
32	Human Myoblasts and Muscle-Derived SP Cells. , 2005, 107, 097-110.		17
33	Myogenic Potential of Muscle Side and Main Population Cells after Intravenous Injection into Sub-lethally Irradiated mdx Mice. Journal of Histochemistry and Cytochemistry, 2005, 53, 861-873.	1.3	33
34	Stem cell therapy for muscular dystrophy. Expert Opinion on Biological Therapy, 2004, 4, 1-9.	1.4	40
35	Role of bone marrow cell trafficking in replenishing skeletal muscle SP and MP cell populations. Journal of Cell Science, 2004, 117, 1979-1988.	1.2	33
36	Demystifying SP cell purification: viability, yield, and phenotype are defined by isolation parameters. Experimental Cell Research, 2004, 298, 144-154.	1.2	154

#	Article	IF	Citations
37	Statistical Challenges in Functional Genomics. Statistical Science, 2003, 18, 33.	1.6	84
38	Muscular dystrophies and stem cells: a therapeutic challenge. Cytotherapy, 2002, 4, 513-519.	0.3	1
39	Recent advances in and therapeutic potential of muscle-derived stem cells. Journal of Cellular Biochemistry, 2002, 85, 80-87.	1.2	10
40	Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. Journal of Clinical Investigation, 2002, 110, 807-814.	3.9	140
41	Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. Journal of Clinical Investigation, 2002, 110, 807-814.	3.9	89
42	Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 1999, 401, 390-394.	13.7	1,613
43	T Cell Receptor BV Gene Rearrangements in the Spinal Cords and Cerebrospinal Fluid of Patients with Amyotrophic Lateral Sclerosis. Neurobiology of Disease, 1999, 6, 392-405.	2.1	29
44	Title is missing!. Nature, 1999, 401, 390-394.	13.7	605
45	The fate of individual myoblasts after transplantation into muscles of DMD patients. Nature Medicine, 1997, 3, 970-977.	15.2	296
46	A method to codetect introduced genes and their products in gene therapy protocols. Nature Biotechnology, 1996, 14, 1012-1016.	9.4	51
47	The Three Human Syntrophin Genes Are Expressed in Diverse Tissues, Have Distinct Chromosomal Locations, and Each Bind to Dystrophin and Its Relatives. Journal of Biological Chemistry, 1996, 271, 2724-2730.	1.6	146
48	$\hat{1}^2\hat{a}$ €"sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. Nature Genetics, 1995, 11, 266-273.	9.4	438
49	Mutations in the Dystrophin-Associated Protein [IMAGE]-Sarcoglycan in Chromosome 13 Muscular Dystrophy. Science, 1995, 270, 819-822.	6.0	510
50	Specific T cell receptor gene rearrangements at the site of muscle degeneration in Duchenne muscular dystrophy. Journal of Immunology, 1994, 153, 4798-805.	0.4	52
51	Dystrophin abnormalities in Duchenne and Becker dystrophy carriers: correlation with cytoskeletal proteins and myosins. Journal of Neurology, 1993, 240, 455-461.	1.8	9
52	Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature, 1992, 356, 435-438.	13.7	406
53	Letters to the editor. Muscle and Nerve, 1992, 15, 1209-1215.	1.0	28
54	Analysis of the T cell repertoire using the PCR and specific oligonucleotide primers. BioTechniques, 1992, 12, 728-35.	0.8	57