Sylvain Gigan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7140323/sylvain-gigan-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

86 40 125 7,542 h-index g-index citations papers 6.29 8.9 164 9,797 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
125	Roadmap on chaos-inspired imaging technologies (CI2-Tech). <i>Applied Physics B: Lasers and Optics</i> , 2022 , 128, 1	1.9	3
124	Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination <i>Nature Communications</i> , 2022 , 13, 1447	17.4	3
123	Controlling spatial coherence with an optical complex medium. <i>Optics Express</i> , 2021 , 29, 40831	3.3	1
122	Scalable Spin-Glass Optical Simulator. <i>Physical Review Applied</i> , 2021 , 15,	4.3	13
121	Spectrally resolved point-spread-function engineering using a complex medium. <i>Optics Express</i> , 2021 , 29, 8985-8996	3.3	1
120	Accelerating ptychographic reconstructions using spectral initializations. Optics Letters, 2021, 46, 1357-	-13360	4
119	Mean path length invariance in wave-scattering beyond the diffusive regime. <i>Communications Physics</i> , 2021 , 4,	5.4	3
118	Visualization of Directional Beaming of Weakly Localized Raman from a Random Network of Silicon Nanowires. <i>Advanced Science</i> , 2021 , 8, 2100139	13.6	2
117	Statistical Nonlinear Optical Mapping of Localized and Delocalized Plasmonic Modes in Disordered Gold Metasurfaces. <i>ACS Photonics</i> , 2021 , 8, 1937-1943	6.3	1
116	Three-dimensional broadband light beam manipulation in forward scattering samples. <i>Optics Express</i> , 2021 , 29, 6563-6581	3.3	4
115	Deeply Subwavelength Localization with Reverberation-Coded Aperture. <i>Physical Review Letters</i> , 2021 , 127, 043903	7.4	18
114	Engineering spatial correlations of entangled photon pairs by pump beam shaping. <i>Optics Letters</i> , 2021 , 46, 4200-4203	3	O
113	Speckle Engineering through Singular Value Decomposition of the Transmission Matrix. <i>Physical Review Letters</i> , 2021 , 127, 093903	7.4	O
112	How to organize an online conference. Nature Reviews Materials, 2020, 1-4	73.3	25
111	Readout of fluorescence functional signals through highly scattering tissue. <i>Nature Photonics</i> , 2020 , 14, 361-364	33.9	9
110	Far-Field Wavefront Control of Nonlinear Luminescence in Disordered Gold Metasurfaces. <i>Nano Letters</i> , 2020 , 20, 3291-3298	11.5	5
109	Non-invasive single-shot recovery of a point-spread function of a memory effect based scattering imaging system. <i>Optics Letters</i> , 2020 , 45, 5397-5400	3	4

108	Chromato-axial memory effect through a forward-scattering slab. Optica, 2020, 7, 338	8.6	11
107	Programmable linear quantum networks with a multimode fibre. <i>Nature Photonics</i> , 2020 , 14, 139-142	33.9	25
106	Large-Scale Optical Reservoir Computing for Spatiotemporal Chaotic Systems Prediction. <i>Physical Review X</i> , 2020 , 10,	9.1	16
105	Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. <i>Nature Communications</i> , 2020 , 11, 6154	17.4	17
104	Inference in artificial intelligence with deep optics and photonics. <i>Nature</i> , 2020 , 588, 39-47	50.4	114
103	Local Optimization of Wave-fronts for optimal sensitivity PHase Imaging (LowPhi). <i>Optics Communications</i> , 2020 , 454, 124484	2	7
102	. IEEE Journal of Selected Topics in Quantum Electronics, 2020 , 26, 1-12	3.8	27
101	Invariance properties of bacterial random walks in complex structures. <i>Nature Communications</i> , 2019 , 10, 2442	17.4	16
100	Transmission Matrix Approach to Light Control in Complex Media 2019 , 121-137		
99	Coupling Optical Wavefront Shaping and Photoacoustics 2019 , 138-160		
99 98	Coupling Optical Wavefront Shaping and Photoacoustics 2019 , 138-160 Feedback-Based Wavefront Shaping 2019 , 189-216		
98	Feedback-Based Wavefront Shaping 2019 , 189-216 Wavefront-Engineered Optical Focusing into Scattering Media Using Ultrasound- or		
98 97	Feedback-Based Wavefront Shaping 2019 , 189-216 Wavefront-Engineered Optical Focusing into Scattering Media Using Ultrasound- or Perturbation-Based Guide Stars: TRUE, TRAP, SEWS, and PAWS 2019 , 283-314	2.6	22
98 97 96	Feedback-Based Wavefront Shaping 2019, 189-216 Wavefront-Engineered Optical Focusing into Scattering Media Using Ultrasound- or Perturbation-Based Guide Stars: TRUE, TRAP, SEWS, and PAWS 2019, 283-314 Transmission Matrix Correlations 2019, 315-328 Spatially entangled photon-pair generation using a partial spatially coherent pump beam. <i>Physical</i>		
98 97 96 95	Feedback-Based Wavefront Shaping 2019, 189-216 Wavefront-Engineered Optical Focusing into Scattering Media Using Ultrasound- or Perturbation-Based Guide Stars: TRUE, TRAP, SEWS, and PAWS 2019, 283-314 Transmission Matrix Correlations 2019, 315-328 Spatially entangled photon-pair generation using a partial spatially coherent pump beam. <i>Physical Review A</i> , 2019, 99,		
98 97 96 95 94	Feedback-Based Wavefront Shaping 2019, 189-216 Wavefront-Engineered Optical Focusing into Scattering Media Using Ultrasound- or Perturbation-Based Guide Stars: TRUE, TRAP, SEWS, and PAWS 2019, 283-314 Transmission Matrix Correlations 2019, 315-328 Spatially entangled photon-pair generation using a partial spatially coherent pump beam. <i>Physical Review A</i> , 2019, 99, High-Sensitivity High-Speed Compressive Spectrometer for Raman Imaging. <i>ACS Photonics</i> , 2019, 6, 140 Spectral Method for Multiplexed Phase Retrieval and Application in Optical Imaging in Complex		5 ₅

90	Noninvasive light focusing in scattering media using speckle variance optimization. <i>Optica</i> , 2019 , 6, 136	31 8.6	22
89	Enhanced stability of the focus obtained by wavefront optimization in dynamical scattering media. <i>Optica</i> , 2019 , 6, 1554	8.6	4
88	Controlling light in complex media beyond the acoustic diffraction-limit using the acousto-optic transmission matrix. <i>Nature Communications</i> , 2019 , 10, 717	17.4	17
87	Snapshot fiber spectral imaging using speckle correlations and compressive sensing. <i>Optics Express</i> , 2018 , 26, 32302-32316	3.3	9
86	Transmission matrix approaches for nonlinear fluorescence excitation through multiple scattering media. <i>Optics Letters</i> , 2018 , 43, 2831-2834	3	11
85	Scaling Up Echo-State Networks With Multiple Light Scattering 2018 ,		8
84	Light fields in complex media: Mesoscopic scattering meets wave control. <i>Reviews of Modern Physics</i> , 2017 , 89,	40.5	245
83	Ultra-fast 3D scanning and holographic illumination in non-linear microscopy using acousto-optic deflectors 2017 ,		1
82	Optical microscopy aims deep. <i>Nature Photonics</i> , 2017 , 11, 14-16	33.9	48
81	Focusing light through dynamical samples using fast continuous wavefront optimization. <i>Optics Letters</i> , 2017 , 42, 4994-4997	3	51
80	Polarization recovery through scattering media. Science Advances, 2017, 3, e1600743	14.3	35
79	Observation of mean path length invariance in light-scattering media. <i>Science</i> , 2017 , 358, 765-768	33.3	40
78	Point-spread-function engineering through a complex medium 2017 ,		1
77	Photoacoustic imaging beyond the acoustic diffraction-limit with dynamic speckle illumination and sparse joint support recovery. <i>Optics Express</i> , 2017 , 25, 4875-4886	3.3	28
76	Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity. <i>Optics Express</i> , 2017 , 25, 27182-27194	3.3	23
75	Transmission-matrix-based point-spread-function engineering through a complex medium. <i>Optica</i> , 2017 , 4, 54	8.6	49
74	Temporal recompression through a scattering medium via a broadband transmission matrix. <i>Optica</i> , 2017 , 4, 1289	8.6	16
73	Speckle-based hyperspectral imaging combining multiple scattering and compressive sensing in nanowire mats. <i>Optics Letters</i> , 2017 , 42, 1820-1823	3	20

72 Chapter 16 Using the Transmission Matrix to Image Disordered Media **2017**, 489-516

71	Fast Phase Retrieval for High Dimensions: A Block-Based Approach. <i>IEEE Signal Processing Letters</i> , 2016 , 23, 1179-1182	3.2	4
70	Spatiotemporal Coherent Control of Light through a Multiple Scattering Medium with the Multispectral Transmission Matrix. <i>Physical Review Letters</i> , 2016 , 116, 253901	7.4	71
69	Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach. <i>Physical Review A</i> , 2016 , 94,	2.6	21
68	Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping. <i>Physical Review A</i> , 2016 , 94,	2.6	25
67	Publisher Note: Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping [Phys. Rev. A 94, 043830 (2016)]. <i>Physical Review A</i> , 2016 , 94,	2.6	2
66	Super-resolution photoacoustic fluctuation imaging with multiple speckle illumination. <i>Optica</i> , 2016 , 3, 54	8.6	40
65	Two-photon quantum walk in a multimode fiber. <i>Science Advances</i> , 2016 , 2, e1501054	14.3	70
64	Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis. <i>Optics Letters</i> , 2016 , 41, 5003-5006	3	48
63	Disorder-mediated crowd control in an active matter system. <i>Nature Communications</i> , 2016 , 7, 10907	17.4	44
62	Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach 2016 ,		9
61	Random projections through multiple optical scattering: Approximating Kernels at the speed of light 2016 ,		24
60	Photoacoustics with coherent light. <i>Photoacoustics</i> , 2016 , 4, 22-35	9	14
59	Widefield lensless imaging through a fiber bundle via speckle correlations. <i>Optics Express</i> , 2016 , 24, 168	3,53,55	65
58	Controlled light propagation through complex media introduction. <i>Optics Express</i> , 2015 , 23, 13587-8	3.3	
57	Characterization of the angular memory effect of scattered light in biological tissues. <i>Optics Express</i> , 2015 , 23, 13505-16	3.3	82
56	Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. <i>Optics Express</i> , 2015 , 23, 11898-911	3.3	109
55	Step-by-step guide to the realization of advanced optical tweezers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2015 , 32, B84	1.7	47

54	Probing Extended Modes on Disordered Plasmonic Networks by Wavefront Shaping. <i>ACS Photonics</i> , 2015 , 2, 1658-1662	6.3	7
53	Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix. <i>Scientific Reports</i> , 2015 , 5, 10347	4.9	52
52	Scanning-free imaging through a single fiber by random spatio-spectral encoding. <i>Optics Letters</i> , 2015 , 40, 534-7	3	23
51	Brownian motion in a speckle light field: tunable anomalous diffusion and selective optical manipulation. <i>Scientific Reports</i> , 2014 , 4, 3936	4.9	62
50	Adaptive pumping for spectral control of random lasers. <i>Nature Physics</i> , 2014 , 10, 426-431	16.2	129
49	Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. <i>Nature Photonics</i> , 2014 , 8, 58-64	33.9	159
48	Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. <i>Nature Photonics</i> , 2014 , 8, 784-790	33.9	494
47	Simulation of the active Brownian motion of a microswimmer. <i>American Journal of Physics</i> , 2014 , 82, 65	966 / 64	105
46	Imaging with nature: compressive imaging using a multiply scattering medium. <i>Scientific Reports</i> , 2014 , 4, 5552	4.9	100
45	Co-integration of a smart CMOS image sensor and a spatial light modulator for real-time optical phase modulation 2014 ,		1
44	Improving photoacoustic-guided optical focusing in scattering media by spectrally filtered detection. <i>Optics Letters</i> , 2014 , 39, 6054-7	3	16
43	Nonclassical light manipulation in a multiple-scattering medium. <i>Optics Letters</i> , 2014 , 39, 6090-3	3	15
42	Light focusing and two-dimensional imaging through scattering media using the photoacoustic transmission matrix with an ultrasound array. <i>Optics Letters</i> , 2014 , 39, 2664-7	3	29
41	Speckle optical tweezers: micromanipulation with random light fields. <i>Optics Express</i> , 2014 , 22, 18159-6	573.3	54
40	Invariance property of wave scattering through disordered media. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 17765-70	11.5	34
39	Engineering particle trajectories in microfluidic flows using speckle light fields 2014,		1
38	Phase-space behavior and conditional dynamics of an optomechanical system. <i>Physical Review A</i> , 2013 , 88,	2.6	1
37	A 4000 Hz CMOS image sensor with in-pixel processing for light measurement and modulation 2013 ,		4

(2008-2013)

36	Improving visibility in photoacoustic imaging using dynamic speckle illumination. <i>Optics Letters</i> , 2013 , 38, 5188-91	3	51
35	A Less Invasive Approach to Rheology Measurements. <i>Physics Magazine</i> , 2012 , 5,	1.1	4
34	Taming random lasers through active spatial control of the pump. <i>Physical Review Letters</i> , 2012 , 109, 033903	7.4	90
33	Towards a real time sensor for focusing through scattering media 2012,		1
32	Measuring aberrations in the rat brain by a new coherence-gated wavefront sensor using a Linnik interferometer 2012 ,		2
31	Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer. <i>Biomedical Optics Express</i> , 2012 , 3, 2510-25	3.5	20
30	Intra-Operative Ex-Situ and In-Situ Optical Biopsy Using Light-CT. <i>Advances in Intelligent and Soft Computing</i> , 2012 , 77-84		
29	Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy. <i>Optics Express</i> , 2011 , 19, 4833-47	3.3	120
28	Direct determination of diffusion properties of random media from speckle contrast. <i>Optics Letters</i> , 2011 , 36, 3332-4	3	39
27	Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium. <i>Nature Communications</i> , 2011 , 2, 447	17.4	135
26	Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis. <i>Physical Review Letters</i> , 2011 , 107, 263901	7.4	57
25	Controlling light through optical disordered media: transmission matrix approach. <i>New Journal of Physics</i> , 2011 , 13, 123021	2.9	140
24	Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy. <i>Journal of Biomedical Optics</i> , 2011 , 16, 116012	3.5	60
23	Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. <i>Physical Review Letters</i> , 2010 , 104, 100601	7.4	825
22	Image transmission through an opaque material. <i>Nature Communications</i> , 2010 , 1, 81	17.4	368
21	Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. <i>Nature Physics</i> , 2009 , 5, 485-488	16.2	257
20	Defocus test and defocus correction in full-field optical coherence tomography. <i>Optics Letters</i> , 2009 , 34, 1576-8	3	47
19	Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. <i>Physical Review A</i> , 2008 , 77,	2.6	397

18	Monocrystalline AlxGa1⊠As heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime. <i>Applied Physics Letters</i> , 2008 , 92, 261108	3.4	58
17	Radiation-pressure self-cooling of a micromirror in a cryogenic environment. <i>Europhysics Letters</i> , 2008 , 81, 54003	1.6	45
16	Creating and probing multipartite macroscopic entanglement with light. <i>Physical Review Letters</i> , 2007 , 99, 250401	7.4	228
15	Spatial quantum optical properties of c.w. Optical Parametric Amplification. <i>Comptes Rendus Physique</i> , 2007 , 8, 199-205	1.4	1
14	Optical imaging in biological tissue: taking advantage of the light coherence properties. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society</i> , 2007 , 2007, 520		
13	Optomechanical entanglement between a movable mirror and a cavity field. <i>Physical Review Letters</i> , 2007 , 98, 030405	7.4	666
12	Reconstructing the dynamics of a movable mirror in a detuned optical cavity. <i>New Journal of Physics</i> , 2006 , 8, 107-107	2.9	97
11	Continuous-wave phase-sensitive parametric image amplification. <i>Journal of Modern Optics</i> , 2006 , 53, 809-820	1.1	17
10	High reflectivity high-Q micromechanical Bragg mirror. <i>Applied Physics Letters</i> , 2006 , 89, 223101	3.4	25
9	Self-cooling of a micromirror by radiation pressure. <i>Nature</i> , 2006 , 444, 67-70	50.4	695
9	Self-cooling of a micromirror by radiation pressure. <i>Nature</i> , 2006 , 444, 67-70 Image transmission through a stable paraxial cavity. <i>Physical Review A</i> , 2005 , 72,	50.4	695
			7.
8	Image transmission through a stable paraxial cavity. <i>Physical Review A</i> , 2005 , 72, Multimode squeezing properties of a confocal optical parametric oscillator: Beyond the thin-crystal	2.6	24
8	Image transmission through a stable paraxial cavity. <i>Physical Review A</i> , 2005 , 72, Multimode squeezing properties of a confocal optical parametric oscillator: Beyond the thin-crystal approximation. <i>Physical Review A</i> , 2005 , 72, Experimental study of the spatial distribution of quantum correlations in a confocal optical	2.6 2.6 2.6	24
876	Image transmission through a stable paraxial cavity. <i>Physical Review A</i> , 2005 , 72, Multimode squeezing properties of a confocal optical parametric oscillator: Beyond the thin-crystal approximation. <i>Physical Review A</i> , 2005 , 72, Experimental study of the spatial distribution of quantum correlations in a confocal optical parametric oscillator. <i>Physical Review A</i> , 2003 , 67,	2.6 2.6 2.6	24 8 44
8 7 6	Image transmission through a stable paraxial cavity. <i>Physical Review A</i> , 2005 , 72, Multimode squeezing properties of a confocal optical parametric oscillator: Beyond the thin-crystal approximation. <i>Physical Review A</i> , 2005 , 72, Experimental study of the spatial distribution of quantum correlations in a confocal optical parametric oscillator. <i>Physical Review A</i> , 2003 , 67, Quantum information processing in optical images. <i>Superlattices and Microstructures</i> , 2002 , 32, 323-329	2.6 2.6 2.6	24 8 44
8 7 6 5	Image transmission through a stable paraxial cavity. <i>Physical Review A</i> , 2005 , 72, Multimode squeezing properties of a confocal optical parametric oscillator: Beyond the thin-crystal approximation. <i>Physical Review A</i> , 2005 , 72, Experimental study of the spatial distribution of quantum correlations in a confocal optical parametric oscillator. <i>Physical Review A</i> , 2003 , 67, Quantum information processing in optical images. <i>Superlattices and Microstructures</i> , 2002 , 32, 323-329. A photoacoustic transmission matrix for deep optical imaging. <i>SPIE Newsroom</i> ,	2.6 2.6 2.6 2.8	24 8 44 1