James D Allan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/714022/james-d-allan-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

260 18,648 63 133 h-index g-index citations papers 5.76 21,230 7.3 349 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
260	Examining chemical composition of gas turbine-emitted organic aerosol using positive matrix factorisation (PMF). <i>Journal of Aerosol Science</i> , 2022 , 159, 105869	4.3	Ο
259	Aerodynamic size-resolved composition and cloud condensation nuclei properties of aerosols in a Beijing suburban region. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 4375-4391	6.8	0
258	A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry. <i>Geophysical Research Letters</i> , 2022 , 49,	4.9	O
257	European Aerosol Phenomenology - 8: Harmonised Source Apportionment of Organic Aerosol using 22 Year-long ACSM/AMS Datasets. <i>Environment International</i> , 2022 , 107325	12.9	1
256	Physical and chemical properties of black carbon and organic matter from different combustion and photochemical sources using aerodynamic aerosol classification. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 16161-16182	6.8	2
255	Planetary Boundary Layer Height Modulates Aerosol Water Vapor Interactions During Winter in the Megacity of Delhi. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD035681	4.4	0
254	Characterizing Black Carbon and Gaseous Pollutants on the Yangtze River Across Eastern China Continent. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033488	4.4	
253	Rapid transformation of ambient absorbing aerosols from West African biomass burning. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 9417-9440	6.8	7
252	Technical note: A new approach to discriminate different black carbon sources by utilising fullerene and metals in positive matrix factorisation analysis of high-resolution soot particle aerosol mass spectrometer data. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 10763-10777	6.8	2
251	Vertical profile of particle hygroscopicity and CCN effectiveness during winter in Beijing: insight into the hygroscopicity transition threshold of black carbon. <i>Faraday Discussions</i> , 2021 , 226, 239-254	3.6	4
250	Direct measurements of black carbon fluxes in central Beijing using the eddy covariance method. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 147-162	6.8	3
249	Using highly time-resolved online mass spectrometry to examine biogenic and anthropogenic contributions to organic aerosol in Beijing. <i>Faraday Discussions</i> , 2021 , 226, 382-408	3.6	3
248	Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol mass spectrometry: chemical characterisation, source apportionment and new marker identification. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 10133-10158	6.8	2
247	Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 11201-11224	6.8	12
246	PM₁ composition and source apportionment at two sites in Delhi, India, across multiple seasons. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 11655-11667	6.8	2
245	Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: A review. <i>Atmospheric Environment</i> , 2021 , 262, 118592	5.3	27
244	Enhanced aerosol particle growth sustained by high continental chlorine emission in India. <i>Nature Geoscience</i> , 2021 , 14, 77-84	18.3	37

Characterising mass-resolved mixing state of black carbon in Beijing using a morphology-independent measurement method. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 3645-366	5 ^{6.8}	14
Transformation and ageing of biomass burning carbonaceous aerosol over tropical South America from aircraft in situ measurements during SAMBBA. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 5309-5	5326	16
Seasonal contrast in size distributions and mixing state of black carbon and its association with PM_{1.0} chemical composition from the eastern coast of India. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 3965-3985	6.8	15
Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 12697-12719	6.8	16
Robust observational constraint of uncertain aerosol processes and emissions in a climate model and the effect on aerosol radiative forcing. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 9491-9524	6.8	9
Characterizing the Particle Composition and Cloud Condensation Nuclei from Shipping Emission in Western Europe. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	7
Pollutant Emissions from Improved Cookstoves of the Type Used in Sub-Saharan Africa. <i>Combustion Science and Technology</i> , 2020 , 192, 1582-1602	1.5	12
Black carbon physical and optical properties across northern India during pre-monsoon and monsoon seasons. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 13079-13096	6.8	11
Transformation and aging of biomass burning carbonaceous aerosol over tropical South America from aircraft in-situ measurements during SAMBBA 2019 ,		5
Seasonal contrast in size distributions and mixing state of black carbon and its association with PM1.0 chemical composition from the eastern coast of India 2019 ,		1
Characterization of black carbon-containing fine particles in Beijing during wintertime. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 447-458	6.8	51
Vertical characterization of aerosol optical properties and brown carbon in winter in urban Beijing, China. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 165-179	6.8	52
Vertical and horizontal distribution of submicron aerosol chemical composition and physical characteristics across northern India during pre-monsoon and monsoon seasons. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 5615-5634	6.8	30
The vertical distribution of biomass burning pollution over tropical South America from aircraft in situ measurements during SAMBBA. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 5771-5790	6.8	16
Contrasting physical properties of black carbon in urban Beijing between winter and summer. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 6749-6769	6.8	53
Introduction to the special issue I h-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing) I Atmospheric Chemistry and Physics, 2019 , 19, 7519-75	68 46	73
Mineralogy and mixing state of north African mineral dust by online single-particle mass spectrometry. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2259-2281	6.8	9
Evaluating biases in filter-based aerosol absorption measurements using photoacoustic spectroscopy. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 3417-3434	4	22
	morphology-independent measurement method. Atmospheric Chemistry and Physics, 2020, 20, 3645-366. Transformation and ageing of biomass burning carbonaceous aerosol over tropical South America from aircraft in situ measurements during SAMBBA. Atmospheric Chemistry and Physics, 2020, 20, 5309-584. Seasonal contrast in size distributions and mixing state of black carbon and its association with PMRItsubs> 1.08Lt/subs> chemical composition from the eastern coast of India. Atmospheric Chemistry and Physics, 2020, 20, 3965-3985. Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017. Atmospheric Chemistry and Physics, 2020, 20, 12697-12719. Robust observational constraint of uncertain aerosol processes and emissions in a climate model and the effect on aerosol radiative forcing. Atmospheric Chemistry and Physics, 2020, 20, 9491-9524. Characterizing the Particle Composition and Cloud Condensation Nuclei from Shipping Emission in Western Europe. Environmental Science & Samp; Technology, 2020, 54, 15604-15612. Pollutant Emissions from Improved Cookstoves of the Type Used in Sub-Saharan Africa. Combustion Science and Technology, 2020, 192, 1582-1602. Black carbon physical and optical properties across northern India during pre-monsoon and monsoon seasons. Atmospheric Chemistry and Physics, 2019, 19, 13079-13096. Transformation and aging of biomass burning carbonaceous aerosol over tropical South America from aircraft in-situ measurements during SAMBBA 2019, Seasonal contrast in size distributions and mixing state of black carbon and its association with PM1.0 chemical composition from the eastern coast of India 2019, Characterization of black carbon-containing fine particles in Beijing during wintertime. Atmospheric Chemistry and Physics, 2019, 19, 447-458. Vertical characterization of aerosol optical properties and brown carbon in winter in urban Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 515-5634. The	Transformation and ageing of biomass burning carbonaceous aerosol over tropical South America from aircraft in situ measurements during SAMBBA. Atmospheric Chemistry and Physics, 2020, 20, 3309-5326 Seasonal contrast in size distributions and mixing state of black carbon and its association with PM&Itsub> 1.08Lts/sub> chemical composition from the eastern coast of India. Atmospheric Chemistry and Physics, 2020, 20, 3955-3985 Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017. Atmospheric Chemistry and Physics, 2020, 20, 12697-12719 Robust observational constraint of uncertain aerosol processes and emissions in a climate model and the effect on aerosol radiative forcing. Atmospheric Chemistry and Physics, 2020, 20, 12697-12719 Characterizing the Particle Composition and Cloud Condensation Nuclei from Shipping Emission in Western Europe. Environmental Science & Amp; Technology, 2020, 54, 15604-15612 Pollutant Emissions from Improved Cookstoves of the Type Used in Sub-Saharan Africa. Combustion Science and Technology, 2020, 192, 1582-1602 Black carbon physical and optical properties across northern India during pre-monsoon and monsoon seasons. Atmospheric Chemistry and Physics, 2019, 19, 13079-13096 Black carbon physical and optical properties across northern India during pre-monsoon and monsoon seasons. Atmospheric Chemistry and Physics, 2019, 19, 13079-13096 Characterization of Black carbon-containing fine particles in Beijing during wintertime. Atmospheric Chemistry and Physics, 2019, 19, 147-458 Vertical characterization of serosol optical properties and brown carbon in winter in urban Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 165-179 Vertical and horizontal distribution of submicron aerosol chemical composition and physical Chemistry and Physics, 2019, 19, 5615-5634 The vertical distribution of biomass burning pollution over tropical South America from aircraft in situ measurements during

225	In situ constraints on the vertical distribution of global aerosol. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 11765-11790	6.8	15
224	Intercomparison of nitrous acid (HONO) measurement techniques in a megacity (Beijing). <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 6449-6463	4	29
223	Observations of Isocyanate, Amide, Nitrate, and Nitro Compounds From an Anthropogenic Biomass Burning Event Using a ToF-CIMS. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 7687	4.4	21
222	Highly controlled, reproducible measurements of aerosol emissions from combustion of altommon African biofuel source. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 385-403	6.8	14
221	Online Chemical Characterization of Food-Cooking Organic Aerosols: Implications for Source Apportionment. <i>Environmental Science & Environmental Scien</i>	10.3	53
220	Novel insights on new particle formation derived from a pan-european observing system. <i>Scientific Reports</i> , 2018 , 8, 1482	4.9	34
219	Simultaneous aerosol mass spectrometry and chemical ionisation mass spectrometry measurements during a biomass burning event in the UK: insights into nitrate chemistry. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 4093-4111	6.8	22
218	Modelling carbonaceous aerosol from residential solid fuel burning with different assumptions for emissions. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 4497-4518	6.8	6
217	Mixing State of Carbonaceous Aerosols of Primary Emissions from "Improved" African Cookstoves. <i>Environmental Science & Environmental </i>	10.3	13
216	Near-field emission profiling of tropical forest and Cerrado fires in Brazil during SAMBBA 2012. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 5619-5638	6.8	14
215	Contrasting physical properties of black carbon in urban Beijing between winter and summer 2018,		2
214	Introduction to Special Issue In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing) 2018 ,		3
213	The vertical distribution of biomass burning pollution over tropical South America from aircraft in situ measurements during SAMBBA 2018 ,		1
212	Technical note: Use of an atmospheric simulation chamber to investigate the effect of different engine conditions on unregulated VOC-IVOC diesel exhaust emissions. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 11073-11096	6.8	14
211	Observations of organic and inorganic chlorinated compounds and their contribution to chlorine radical concentrations in an urban environment in northern Europe during the wintertime. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 13481-13493	6.8	19
210	Characterization of black carbon-containing fine particles in Beijing during wintertime 2018,		1
209	Light Absorption Enhancement of Black Carbon Aerosol Constrained by Particle Morphology. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	54
208	Online differentiation of mineral phase in aerosol particles by ion formation mechanism using all AAP-TOF single-particle mass spectrometer. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 195-213	34	13

207	Black-carbon absorption enhancement in the atmosphere determined by particle mixing state. <i>Nature Geoscience</i> , 2017 , 10, 184-188	18.3	212
206	The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty. <i>Bulletin of the American Meteorological Society</i> , 2017 , 98, 1857-1877	6.1	43
205	Near-field emission profiling of Rainforest and Cerrado fires in Brazil during SAMBBA 2012 2017 ,		2
204	Profiling aerosol optical, microphysical and hygroscopic properties in ambient conditions by combining in situ and remote sensing. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 83-107	4	7
203	Simultaneous Aerosol Mass Spectrometry and Chemical Ionisation Mass Spectrometry measurements during a biomass burning event in the UK: Insights into nitrate chemistry 2017 ,		4
202	Validation of LIRIC aerosol concentration retrievals using airborne measurements during a biomass burning episode over Athens. <i>Atmospheric Research</i> , 2017 , 183, 255-267	5.4	8
201	STRAPS v1.0: evaluating a methodology for predicting electron impact ionisation mass spectra for the aerosol mass spectrometer. <i>Geoscientific Model Development</i> , 2017 , 10, 2365-2377	6.3	1
200	Evaluating the influence of laser wavelength and detection stage geometry on optical detection efficiency in a single-particle mass spectrometer. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 6051-6	of8	17
199	Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. <i>Geophysical Research Letters</i> , 2016 , 43, 7735-7744	4.9	119
198	Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 1139-1160	6.8	25
197	Organic aerosol source apportionment in London 2013 with ME-2: exploring the solution space with annual and seasonal analysis. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 15545-15559	6.8	21
196	Simulating secondary organic aerosol from missing diesel-related intermediate-volatility organic compound emissions during the Clean Air for London[(ClearfLo) campaign. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6453-6473	6.8	44
195	Biogenic cloud nuclei in the central Amazon during the transition from wet to dry season. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 9727-9743	6.8	31
194	Model simulations of cooking organic aerosol (COA) over the UK using estimates of emissions based on measurements at two sites in London. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 13773-137	7 89 8	25
193	Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea ice to open ocean. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 13945-13967	6.8	21
192	Detailed budget analysis of HONO in central London reveals a missing daytime source. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2747-2764	6.8	76
191	Comment on The effects of molecular weight and thermal decomposition on the sensitivity of a thermal desorption aerosol mass spectrometer (Aerosol Science and Technology, 2016, 50, i-xv	3.4	33
190	Atmospheric composition in the Eastern Mediterranean: Influence of biomass burning during summertime using the WRF-Chem model. <i>Atmospheric Environment</i> , 2016 , 132, 317-331	5.3	24

189	Simulating secondary organic aerosol from missing diesel-related intermediate-volatility organic compound emissions during the Clean Air for London (ClearfLo) campaign 2016 ,		3
188	Assessment of the sensitivity of core / shell parameters derived using the single-particle soot photometer to density and refractive index. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 1701-1718	4	67
187	Chemistry and the Linkages between Air Quality and Climate Change. Chemical Reviews, 2015, 115, 385	6697 1	205
186	Enhanced light absorption by mixed source black and brown carbon particles in UK winter. <i>Nature Communications</i> , 2015 , 6, 8435	17.4	198
185	Meteorology, Air Quality, and Health in London: The ClearfLo Project. <i>Bulletin of the American Meteorological Society</i> , 2015 , 96, 779-804	6.1	84
184	The first UK measurements of nitryl chloride using a chemical ionization mass spectrometer in central London in the summer of 2012, and an investigation of the role of Cl atom oxidation. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 5638-5657	4.4	66
183	The effect of complex black carbon microphysics on the determination of the optical properties of brown carbon. <i>Geophysical Research Letters</i> , 2015 , 42, 613-619	4.9	62
182	Investigating a two-component model of solid fuel organic aerosol in London: processes, PM₁ contributions, and seasonality. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 2429-2443	6.8	25
181	Influence of aerosol chemical composition on N₂O₅ uptake: airborne regional measurements in northwestern Europe. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 973-990	6.8	51
180	WRF-Chem model predictions of the regional impacts of N₂O₅ heterogeneous processes on night-time chemistry over north-western Europe. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 1385-1409	6.8	26
179	Aged boreal biomass-burning aerosol size distributions from BORTAS 2011. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 1633-1646	6.8	34
178	Receptor modelling of fine particles in southern England using CMB including comparison with AMS-PMF factors. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 2139-2158	6.8	29
177	Sources and contributions of wood smoke during winter in London: assessing local and regional influences. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 3149-3171	6.8	61
176	Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08). <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 3687-3701	6.8	77
175	Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6351-6366	6.8	37
174	Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 11291-11309	6.8	54
173	The importance of Asia as a source of black carbon to the European Arctic during springtime 2013. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 11537-11555	6.8	44
172	Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements. <i>Atmospheric Chemistry and Physics</i> , 2015, 15, 11807-11833	6.8	159

(2014-2015)

171	Kerb and urban increment of highly time-resolved trace elements in PM₁₀, PM_{2.5} and PM_{1.0} winter aerosol in London during ClearfLo 2012. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 2367-2386	6.8	37
170	Iodine observed in new particle formation events in the Arctic atmosphere during ACCACIA. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 5599-5609	6.8	76
169	Aerosol chemistry above an extended archipelago of the eastern Mediterranean basin during strong northern winds. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 8401-8421	6.8	12
168	Peak-fitting and integration imprecision in the Aerodyne aerosol mass spectrometer: effects of mass accuracy on location-constrained fits. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 4615-4636	4	14
167	Peak fitting and integration uncertainties for the Aerodyne Aerosol Mass Spectrometer 2015,		2
166	Physical and chemical processes of air masses in the Aegean Sea during Etesians: Aegean-GAME airborne campaign. <i>Science of the Total Environment</i> , 2015 , 506-507, 201-16	10.2	26
165	The molecular identification of organic compounds in the atmosphere: state of the art and challenges. <i>Chemical Reviews</i> , 2015 , 115, 3919-83	68.1	300
164	Estimated contributions of primary and secondary organic aerosol from fossil fuel combustion during the CalNex and Cal-Mex campaigns. <i>Atmospheric Environment</i> , 2014 , 88, 330-340	5.3	20
163	Airborne observations of IEPOX-derived isoprene SOA in the Amazon during SAMBBA. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 11393-11407	6.8	39
162	Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 12109-12132	6.8	39
161	Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 10013-10060	6.8	49
160	Size distribution, mixing state and source apportionment of black carbon aerosol in London during wintertime. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 10061-10084	6.8	127
159	A meta-analysis of particle water uptake reconciliation studies. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 11833-11841	6.8	22
158	Size-dependent wet removal of black carbon in Canadian biomass burning plumes. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 13755-13771	6.8	63
157	Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 9061-9076	6.8	56
156	Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 6159-6176	6.8	232
155	A case study of aerosol scavenging in a biomass burning plume over eastern Canada during the 2011 BORTAS field experiment. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 8449-8460	6.8	15
154	Gaseous chemistry and aerosol mechanism developments for version 3.5.1 of the online regional model, WRF-Chem. <i>Geoscientific Model Development</i> , 2014 , 7, 2557-2579	6.3	40

153	Droplet activation properties of organic aerosols observed at an urban site during CalNex-LA. Journal of Geophysical Research D: Atmospheres, 2013 , 118, 2903-2917	4.4	65
152	Contribution of nitrated phenols to wood burning brown carbon light absorption in Detling, United Kingdom during winter time. <i>Environmental Science & Environmental Science &</i>	10.3	219
151	Overview of the South American biomass burning analysis (SAMBBA) field experiment 2013,		4
150	Cluster analysis of WIBS single-particle bioaerosol data. <i>Atmospheric Measurement Techniques</i> , 2013 , 6, 337-347	4	57
149	Ambient black carbon particle hygroscopic properties controlled by mixing state and composition. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 2015-2029	6.8	127
148	Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 11295-11305	6.8	12
147	Chemical composition and hygroscopic properties of aerosol particles over the Aegean Sea. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 11595-11608	6.8	25
146	Ozone photochemistry in boreal biomass burning plumes. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 7321-7341	6.8	56
145	Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 9233-9257	4.4	201
144	Inorganic and black carbon aerosols in the Los Angeles Basin during CalNex. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 1777-1803	4.4	13
143	Influence of boundary layer dynamics and isoprene chemistry on the organic aerosol budget in a tropical forest. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 9351-9366	4.4	12
142	Physical and Chemical Processes of Polluted Air Masses During Etesians: Aegean-Game Airborne Campaign [An Outline. <i>Springer Atmospheric Sciences</i> , 2013 , 1239-1244	0.7	4
141	Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 2: volatile and semivolatile particulate matter emissions. <i>Environmental Science & Environmental Science & En</i>	10.3	21
140	Characterizing the aging of biomass burning organic aerosol by use of mixing ratios: a meta-analysis of four regions. <i>Environmental Science & Environmental Science & Environ</i>	10.3	93
139	Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations. <i>Atmospheric Measurement Techniques</i> , 2012 , 5, 1869-1887	4	162
138	Single Particle Soot Photometer intercomparison at the AIDA chamber 2012 ,		8
137	Single Particle Soot Photometer intercomparison at the AIDA chamber. <i>Atmospheric Measurement Techniques</i> , 2012 , 5, 3077-3097	4	125
136	Cluster analysis of WIBS single particle bioaerosol data 2012 ,		5

135	Soot Reference Materials for instrument calibration and intercomparisons: a workshop summary with recommendations 2012 ,		8
134	The lofting of Western Pacific regional aerosol by island thermodynamics as observed around Borneo. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 5963-5983	6.8	9
133	Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 941-959	6.8	42
132	Physical and chemical properties of the regional mixed layer of Mexico's Megapolis Part II: evaluation of measured and modeled trace gases and particle size distributions. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 10161-10179	6.8	1
131	Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): an overview of the REPARTEE experiment and its conclusions. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 3065-3114	6.8	102
130	Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 1039-1050	6.8	136
129	Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12109-12136	6.8	349
128	South East Pacific atmospheric composition and variability sampled along 20°LS during VOCALS-REx. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 5237-5262	6.8	105
127	Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12673-12696	6.8	199
126	Investigating organic aerosol loading in the remote marine environment. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 8847-8860	6.8	47
125	Source attribution of Bornean air masses by back trajectory analysis during the OP3 project. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 9605-9630	6.8	28
124	Size-resolved aerosol water uptake and cloud condensation nuclei measurements as measured above a Southeast Asian rainforest during OP3. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 11157-111	1 48	30
123	Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		77
122	Seasonal variation of fine particulate composition in the centre of a UK city. <i>Atmospheric Environment</i> , 2011 , 45, 4379-4389	5.3	17
121	Towards an online-coupled chemistry-climate model: evaluation of COSMO-ART 2011,		1
120	Towards an online-coupled chemistry-climate model: evaluation of trace gases and aerosols in COSMO-ART. <i>Geoscientific Model Development</i> , 2011 , 4, 1077-1102	6.3	68
119	Carbonaceous aerosols contributed by traffic and solid fuel burning at a polluted rural site in Northwestern England. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 1603-1619	6.8	31
118	Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 8151-8171	6.8	91

117	Black carbon measurements in the boundary layer over western and northern Europe. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 9393-9414	6.8	136
116	Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North Atlantic experiments. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 1031-1055	6.8	58
115	Consistency between parameterisations of aerosol hygroscopicity and CCN activity during the RHaMBLe discovery cruise. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 3189-3203	6.8	92
114	Airborne measurements of the spatial distribution of aerosol chemical composition across Europe and evolution of the organic fraction. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 4065-4083	6.8	162
113	CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 4795-4807	6.8	105
112	Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 647-668	6.8	308
111	Measuring atmospheric composition change. <i>Atmospheric Environment</i> , 2009 , 43, 5351-5414	5.3	130
110	Organic aerosol characterization by complementary measurements of chemical bonds and molecular fragments. <i>Atmospheric Environment</i> , 2009 , 43, 6100-6105	5.3	63
109	Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	153
108	Evolution of organic aerosols in the atmosphere. <i>Science</i> , 2009 , 326, 1525-9	33.3	2767
108	Evolution of organic aerosols in the atmosphere. <i>Science</i> , 2009 , 326, 1525-9 Particulate emissions from commercial shipping: Chemical, physical, and optical properties. <i>Journal of Geophysical Research</i> , 2009 , 114,	33.3	2767
	Particulate emissions from commercial shipping: Chemical, physical, and optical properties. <i>Journal</i>	33-3	
107	Particulate emissions from commercial shipping: Chemical, physical, and optical properties. <i>Journal of Geophysical Research</i> , 2009 , 114, Influence of particle chemical composition on the phase of cold clouds at a high-alpine site in	6.8	133
107	Particulate emissions from commercial shipping: Chemical, physical, and optical properties. <i>Journal of Geophysical Research</i> , 2009 , 114, Influence of particle chemical composition on the phase of cold clouds at a high-alpine site in Switzerland. <i>Journal of Geophysical Research</i> , 2009 , 114, Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols. <i>Atmospheric</i>		133 27
107 106 105	Particulate emissions from commercial shipping: Chemical, physical, and optical properties. <i>Journal of Geophysical Research</i> , 2009 , 114, Influence of particle chemical composition on the phase of cold clouds at a high-alpine site in Switzerland. <i>Journal of Geophysical Research</i> , 2009 , 114, Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 6191-6215 Real time chemical characterization of local and regional nitrate aerosols. <i>Atmospheric Chemistry</i>	6.8	133 27 124
107 106 105	Particulate emissions from commercial shipping: Chemical, physical, and optical properties. <i>Journal of Geophysical Research</i> , 2009 , 114, Influence of particle chemical composition on the phase of cold clouds at a high-alpine site in Switzerland. <i>Journal of Geophysical Research</i> , 2009 , 114, Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 6191-6215 Real time chemical characterization of local and regional nitrate aerosols. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 3709-3720 Vertical distribution of sub-micron aerosol chemical composition from North-Western Europe and	6.8	133 27 124 69
107 106 105 104	Particulate emissions from commercial shipping: Chemical, physical, and optical properties. <i>Journal of Geophysical Research</i> , 2009, 114, Influence of particle chemical composition on the phase of cold clouds at a high-alpine site in Switzerland. <i>Journal of Geophysical Research</i> , 2009, 114, Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols. <i>Atmospheric Chemistry and Physics</i> , 2009, 9, 6191-6215 Real time chemical characterization of local and regional nitrate aerosols. <i>Atmospheric Chemistry and Physics</i> , 2009, 9, 3709-3720 Vertical distribution of sub-micron aerosol chemical composition from North-Western Europe and the North-East Atlantic. <i>Atmospheric Chemistry and Physics</i> , 2009, 9, 5389-5401 Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms. <i>Atmospheric</i>	6.8 6.8	133 27 124 69 80

99	Aerosol and trace-gas measurements in the Darwin area during the wet season. <i>Journal of Geophysical Research</i> , 2008 , 113,		37
98	Correction to Aerosol and trace-gas measurements in the Darwin area during the wet season Journal of Geophysical Research, 2008, 113,		4
97	Clouds and aerosols in Puerto Rico has new evaluation. Atmospheric Chemistry and Physics, 2008, 8, 1293-16	3.8 9	56
96	Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 2007-2025	5.8	81
95	The role of VOC oxidation products in continental new particle formation. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 2657-2665	5.8	175
94	Emission, oxidation, and secondary organic aerosol formation of volatile organic compounds as observed at Chebogue Point, Nova Scotia. <i>Journal of Geophysical Research</i> , 2007 , 112,		38
93	Chemical speciation of organic aerosol during the International Consortium for Atmospheric Research on Transport and Transformation 2004: Results from in situ measurements. <i>Journal of Geophysical Research</i> , 2007 , 112,		83
92	Transport of forest fire emissions from Alaska and the Yukon Territory to Nova Scotia during summer 2004. <i>Journal of Geophysical Research</i> , 2007 , 112,		56
91	Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. <i>Journal of Geophysical Research</i> , 2007 , 112,		85
90	Laboratory and Ambient Particle Density Determinations using Light Scattering in Conjunction with Aerosol Mass Spectrometry. <i>Aerosol Science and Technology</i> , 2007 , 41, 343-359	3.4	185
89	Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. <i>Mass Spectrometry Reviews</i> , 2007 , 26, 185-222	11	1443
88	Chemical composition of summertime aerosol in the Po Valley (Italy), northern Adriatic and Black Sea. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2007 , 133, 61-75	5.4	98
87	Technical Note: Use of a beam width probe in an Aerosol Mass Spectrometer to monitor particle collection efficiency in the field. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 549-556	5.8	56
86	Technical Note: Description and Use of the New Jump Mass Spectrum Mode of Operation for the Aerodyne Quadrupole Aerosol Mass Spectrometers (Q-AMS). <i>Aerosol Science and Technology</i> , 2007 , 41, 865-872	3.4	24
85	Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. <i>Geophysical Research Letters</i> , 2007 , 34, n/a-n/a	1.9	1497
84	Hygroscopicity of particles at two rural, urban influenced sites during Pacific 2001: Comparison with estimates of water uptake from particle composition. <i>Atmospheric Environment</i> , 2006 , 40, 2650-266	- 3	39
83	Chemical characteristics of North American surface layer outflow: Insights from Chebogue Point, Nova Scotia. <i>Journal of Geophysical Research</i> , 2006 , 111,		42
82	The North Atlantic Marine Boundary Layer Experiment(NAMBLEX). Overview of the campaign held at Mace Head, Ireland, in summer 2002. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 2241-2272	5.8	54

81	Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 315-327	6.8	138
80	Chemical and physical characteristics of aerosol particles at a remote coastal location, Mace Head, Ireland, during NAMBLEX. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 3289-3301	6.8	40
79	The characterisation of pollution aerosol in a changing photochemical environment. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 5573-5588	6.8	49
78	Simplification of the representation of the organic component of atmospheric particulates. <i>Faraday Discussions</i> , 2005 , 130, 341-62; discussion 363-86, 519-24	3.6	106
77	Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. <i>Environmental Science & Environmental Science & Envi</i>	10.3	551
76	Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization. <i>Geophysical Research Letters</i> , 2005 , 32, n/a-n/a	4.9	101
75	Using NOx and CO monitoring data to indicate fine aerosol number concentrations and emission factors in three UK conurbations. <i>Atmospheric Environment</i> , 2005 , 39, 5157-5169	5.3	22
74	Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with Other Aerosol Instruments. <i>Aerosol Science and Technology</i> , 2005 , 39, 760-770	3.4	166
73	Street canyon aerosol pollutant transport measurements. <i>Science of the Total Environment</i> , 2004 , 334-335, 327-36	10.2	20
72	Aerosol chemical characteristics from sampling conducted on the Island of Jeju, Korea during ACE Asia. <i>Atmospheric Environment</i> , 2004 , 38, 2111-2123	5.3	77
71	Characterization of urban and rural organic particulate in the Lower Fraser Valley using two Aerodyne Aerosol Mass Spectrometers. <i>Atmospheric Environment</i> , 2004 , 38, 5745-5758	5.3	344
70	Chemical and physical processes controlling the distribution of aerosols in the Lower Fraser Valley, Canada, during the Pacific 2001 field campaign. <i>Atmospheric Environment</i> , 2004 , 38, 5759-5774	5.3	27
69	Volatile organic compound measurements at Trinidad Head, California, during ITCT 2K2: Analysis of sources, atmospheric composition, and aerosol residence times. <i>Journal of Geophysical Research</i> , 2004 , 109,		49
68	Submicron aerosol composition at Trinidad Head, California, during ITCT 2K2: Its relationship with gas phase volatile organic carbon and assessment of instrument performance. <i>Journal of Geophysical Research</i> , 2004 , 109,		133
67	Multiscale simulations of tropospheric chemistry in the eastern Pacific and on the U.S. West Coast during spring 2002. <i>Journal of Geophysical Research</i> , 2004 , 109,		26
66	A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data. <i>Journal of Aerosol Science</i> , 2004 , 35, 909-922	4.3	615
65	Direct evidence for coastal iodine particles from Laminaria macroalgae [linkage to emissions of molecular iodine. <i>Atmospheric Chemistry and Physics</i> , 2004 , 4, 701-713	6.8	221
64	A case study of aerosol (4.6nm. Atmospheric Environment, 2003 , 37, 1563-1571	5.3	49

63	Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis. <i>Journal of Geophysical Research</i> , 2003 , 108, n/a-n/a	332
62	Quantitative sampling using an Aerodyne aerosol mass spectrometer 2. Measurements of fine particulate chemical composition in two U.K. cities. <i>Journal of Geophysical Research</i> , 2003 , 108, n/a-n/a	139
61	Correction to Quantitative sampling using an Aerodyne aerosol mass spectrometer: 1. Techniques of data interpretation and error analysis <i>Journal of Geophysical Research</i> , 2003 , 108, n/a-n/a	14
60	Mass Spectrometric Methods for Arosol Composition Masurements267-310	4
59	Seasonal analysis of submicron aerosol in Old Delhi using high resolution aerosol mass spectrometry: Chemical characterisation, source apportionment and new marker identification	3
58	Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017	6
57	PM ₁ composition and source apportionment at two sites in Delhi, India across multiple seasons	2
56	Anthropogenic Secondary Organic Aerosols Contribute Substantially to Air Pollution Mortality	2
55	Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe	4
54	Black carbon measurements in the boundary layer over western and northern Europe	3
53	Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest	3
52	Investigating organic aerosol loading in the remote marine environment	2
51	Source attribution of Bornean air masses by back trajectory analysis during the OP3 project	2
50	Determination of the biogenic secondary organic aerosol fraction in the boreal forest by AMS and NMR measurements	1
49	Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model	6
48	Size-resolved aerosol water uptake and cloud condensation nuclei measurements as measured above a Southeast Asian rainforest during OP3	4
47	Aerosol mass spectrometer constraint on the global secondary organic aerosol budget	19
46	The lofting of Western Pacific regional aerosol by island thermodynamics as observed around Borneo	2

45	Ambient black carbon particle hygroscopic properties controlled by mixing state and composition	2
44	Ozone photochemistry in boreal biomass burning plumes	4
43	Organic aerosol components derived from 25 AMS datasets across Europe using a newly developed ME-2 based source apportionment strategy	10
42	Chemical composition and hygroscopic properties of aerosol particles over the Aegean Sea	1
41	Kerb and urban increment of highly time-resolved trace elements in PM ₁₀ , PM _{2.5} and PM _{1.0} winter aerosol in London during ClearfLo 2012	1
40	Fine-mode organic mass concentrations and sources in the Amazonian wet season (AMAZE-08)	16
39	Size distribution, mixing state and source apportionments of black carbon aerosols in London during winter time	5
38	Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London	10
37	Size-dependent wet removal of black carbon in Canadian biomass burning plumes	6
36	Influence of aerosol chemical composition on N ₂ O ₅ uptake: airborne regional measurements in North-Western Europe	3
35	Investigating the two-component model of solid fuel organic aerosol in London: processes, PM ₁ contributions, and seasonality	3
34	WRF-chem model predictions of the regional impacts of N ₂ 0 ₅ heterogeneous processes on nighttime chemistry over north-western Europe	2
33	Aged boreal biomass burning aerosol size distributions from BORTAS 2011	2
32	Receptor modelling of fine particles in Southern England using CMB including comparison with AMS-PMF factors	2
31	Sources and contributions of wood smoke during winter in London: assessing local and regional influences	3
30	lodine observed in new particle formation events in the Arctic atmosphere during ACCACIA	1
29	A case study of aerosol depletion in a biomass burning plume over Eastern Canada during the 2011 BORTAS field experiment	3
28	Modeling regional aerosol variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns	1

27	Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis	3
26	Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques	2
25	A meta-analysis of particle water uptake reconciliation studies	1
24	Characterization of a real-time tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements	10
23	Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter	2
22	Detailed budget analysis of HONO in central London reveals a missing daytime source	7
21	The characterisation of pollution aerosol in a changing photochemical environment	2
20	Studies of aerosol at a coastal site using two aerosol mass spectrometry instruments and identification of biogenic particle types	7
19	Chemical and physical characteristics of aerosol particles at a remote coastal location, Mace Head, Ireland, during NAMBLEX	2
18	Clouds and aerosols in Puerto Rico 🗈 new evaluation	2
18 17	Clouds and aerosols in Puerto Rico ha new evaluation Total Observed Organic Carbon (TOOC): A synthesis of North American observations	2
17	Total Observed Organic Carbon (TOOC): A synthesis of North American observations	1
17 16	Total Observed Organic Carbon (TOOC): A synthesis of North American observations The role of VOC oxidation products in continental new particle formation	3
17 16 15	Total Observed Organic Carbon (TOOC): A synthesis of North American observations The role of VOC oxidation products in continental new particle formation Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a	1 3 6
17 16 15	Total Observed Organic Carbon (TOOC): A synthesis of North American observations The role of VOC oxidation products in continental new particle formation Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations	1 3 6
17 16 15 14	Total Observed Organic Carbon (TOOC): A synthesis of North American observations The role of VOC oxidation products in continental new particle formation Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North Atlantic experiments Consistency between parameterisations of aerosol hygroscopicity and CCN activity during the	1 3 6 1

9	Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols		1	
8	Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms		5	
7	Assessment of the sensitivity of core/shell parameters derived using the single-particle soot photometer to density and refractive index		8	
6	Gaseous chemistry and aerosol mechanism developments for version 3.5.1 of the online regional model, WRF-Chem		2	
5	Chemical Characterization and Source Apportionment of Organic Aerosols in the Coastal City of Chennai, India: Impact of Marine Air Masses on Aerosol Chemical Composition and Potential for Secondary Organic Aerosol Formation. ACS Earth and Space Chemistry,	3.2	1	
4	Airborne observations of IEPOX-derived isoprene SOA in the Amazon during SAMBBA		2	
3	Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase uptake rates		3	
2	Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): an overview of the REPARTEE experiment and its conclusions		1	
1	Impacts of Hydroperoxymethyl Thioformate on the Global Marine Sulfur Budget. <i>ACS Earth and Space Chemistry</i> ,	3.2	3	