Guigang Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7139801/guigang-zhang-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 9,650 40 63 g-index

63 11,135 10.7 6.78 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
60	Molecular Design of Covalent Triazine Frameworks with Anisotropic Charge Migration for Photocatalytic Hydrogen Production <i>Small</i> , 2022 , e2200129	11	1
59	Fully Condensed Poly (Triazine Imide) Crystals: Extended Econjugation and Structural Defects for Overall Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	11
58	Molecular Triazine⊞eptazine Junctions Promoting Exciton Dissociation for Overall Water Splitting with Visible Light. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 9818-9826	3.8	21
57	Advantages in Using Inexpensive CO2 To Favor Photocatalytic Oxidation of Benzylamines. <i>ACS Catalysis</i> , 2020 , 10, 7336-7342	13.1	26
56	Visible-Light Flow Reactor Packed with Porous Carbon Nitride for Aerobic Substrate Oxidations. <i>ACS Applied Materials & District Materi</i>	9.5	20
55	Molecular Junctions on Polymeric Carbon Nitrides with Enhanced Photocatalytic Performance. <i>ChemSusChem</i> , 2020 , 13, 888-892	8.3	13
54	Reducing the Exciton Binding Energy of Donor-Acceptor-Based Conjugated Polymers to Promote Charge-Induced Reactions. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10236-10240	16.4	132
53	Semi-heterogene duale Nickel-/Photokatalyse mit Kohlenstoffnitriden: Veresterung von Carbonsliren mit Arylhalogeniden. <i>Angewandte Chemie</i> , 2019 , 131, 9676-9681	3.6	11
52	Semi-heterogeneous Dual Nickel/Photocatalysis using Carbon Nitrides: Esterification of Carboxylic Acids with Aryl Halides. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 9575-9580	16.4	66
51	Enhancement of photocatalytic H2 evolution on pyrene-based polymer promoted by MoS2 and visible light. <i>Applied Catalysis B: Environmental</i> , 2019 , 251, 102-111	21.8	41
50	Polymeric Donor-Acceptor Heterostructures for Enhanced Photocatalytic H Evolution without Using Pt Cocatalysts. <i>Chemistry - A European Journal</i> , 2019 , 25, 6102-6107	4.8	21
49	Polymeric Carbon Nitride/Reduced Graphene Oxide/Fe2O3: All-Solid-State Z-Scheme System for Photocatalytic Overall Water Splitting. <i>Angewandte Chemie</i> , 2019 , 131, 7176-7180	3.6	43
48	Polymeric Carbon Nitride/Reduced Graphene Oxide/Fe O : All-Solid-State Z-Scheme System for Photocatalytic Overall Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7102-7106	16.4	184
47	Electron Deficient Monomers that Optimize Nucleation and Enhance the Photocatalytic Redox Activity of Carbon Nitrides. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14950-14954	16.4	74
46	Reducing the Exciton Binding Energy of Donor Acceptor-Based Conjugated Polymers to Promote Charge-Induced Reactions. <i>Angewandte Chemie</i> , 2019 , 131, 10342-10346	3.6	20
45	Oxysulfide Semiconductors for Photocatalytic Overall Water Splitting with Visible Light. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 15580-15582	16.4	41
44	Electron Deficient Monomers that Optimize Nucleation and Enhance the Photocatalytic Redox Activity of Carbon Nitrides. <i>Angewandte Chemie</i> , 2019 , 131, 15092-15096	3.6	12

43	Oxysulfid-Halbleiter fildie photokatalytische Wasserspaltung mit sichtbarem Licht. <i>Angewandte Chemie</i> , 2019 , 131, 15726-15728	3.6	2
42	Green radicals of potassium poly(heptazine imide) using light and benzylamine. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 24771-24775	13	35
41	Tailoring the Grain Boundary Chemistry of Polymeric Carbon Nitride for Enhanced Solar Hydrogen Production and CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3433-3437	16.4	197
40	Tailoring the Grain Boundary Chemistry of Polymeric Carbon Nitride for Enhanced Solar Hydrogen Production and CO2 Reduction. <i>Angewandte Chemie</i> , 2019 , 131, 3471-3475	3.6	44
39	Photocatalytic cyanation of carbon nitride scaffolds: Tuning band structure and enhancing the performance in green light driven C S bond formation. <i>Applied Catalysis B: Environmental</i> , 2018 , 229, 249-253	21.8	35
38	A "waiting" carbon nitride radical anion: a charge storage material and key intermediate in direct C-H thiolation of methylarenes using elemental sulfur as the "S"-source. <i>Chemical Science</i> , 2018 , 9, 3584	- 35 91	69
37	Ionothermal Synthesis of Triazine⊞eptazine-Based Copolymers with Apparent Quantum Yields of 60 % at 420 nm for Solar Hydrogen Production from Bea Water□ <i>Angewandte Chemie</i> , 2018 , 130, 9516-95	<u>3</u> 26	49
36	Visible-Light-Driven Photochemical Activation of sp3 Cℍ Bond for Hemiaminal Formation. <i>Asian Journal of Organic Chemistry</i> , 2018 , 7, 2464-2467	3	3
35	Ionothermal Synthesis of Triazine-Heptazine-Based Copolymers with Apparent Quantum Yields of 60 % at 420 nm for Solar Hydrogen Production from "Sea Water". <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9372-9376	16.4	259
34	Advancing the n -d electron transition of carbon nitride nanotubes for H2 photosynthesis. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12723-12728	13	153
33	Ni-Co layered double hydroxides cocatalyst for sustainable oxygen photosynthesis. <i>Applied Catalysis B: Environmental</i> , 2017 , 210, 454-461	21.8	44
32	Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13445-13449	16.4	379
31	Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. <i>Angewandte Chemie</i> , 2017 , 129, 13630-13634	₁ 3.6	91
30	The facile synthesis of graphitic carbon nitride from amino acid and urea for photocatalytic H2 production. <i>Research on Chemical Intermediates</i> , 2017 , 43, 5137-5152	2.8	28
29	Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. <i>Chemical Science</i> , 2017 , 8, 5261-5274	9.4	238
28	Konjugierte Polymere: Katalysatoren fEldie photokatalytische Wasserstoffentwicklung. Angewandte Chemie, 2016 , 128, 15940-15956	3.6	86
27	Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 15712-15727	16.4	531
26	Overall water splitting by Pt/g-CN photocatalysts without using sacrificial agents. <i>Chemical Science</i> , 2016 , 7, 3062-3066	9.4	689

25	Ultrafine Cobalt Catalysts on Covalent Carbon Nitride Frameworks for Oxygenic Photosynthesis. <i>ACS Applied Materials & District Materia</i>	9.5	93
24	Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation. <i>Applied Catalysis B: Environmental</i> , 2016 , 181, 413-419	21.8	177
23	Layering MoS2 on soft hollow g-C3N4 nanostructures for photocatalytic hydrogen evolution. <i>Applied Catalysis A: General</i> , 2016 , 521, 2-8	5.1	106
22	A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. <i>Applied Catalysis B: Environmental</i> , 2016 , 192, 116-125	21.8	368
21	Layered Co(OH)2 Deposited Polymeric Carbon Nitrides for Photocatalytic Water Oxidation. <i>ACS Catalysis</i> , 2015 , 5, 941-947	13.1	285
20	Cobalt selenide: a versatile cocatalyst for photocatalytic water oxidation with visible light. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 17946-17950	13	81
19	Merging Surface Organometallic Chemistry with Graphitic Carbon Nitride Photocatalysis for CO2 Photofixation. <i>ChemCatChem</i> , 2015 , 7, 1422-1423	5.2	28
18	Surface Modification of Carbon Nitride Polymers by CoreBhell Nickel/Nickel Oxide Cocatalysts for Hydrogen Evolution Photocatalysis. <i>ChemCatChem</i> , 2015 , 7, 2864-2870	5.2	87
17	Mesoporous carbon nitride-tungsten oxide composites for enhanced photocatalytic hydrogen evolution. <i>ChemSusChem</i> , 2015 , 8, 1404-10	8.3	88
16	Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. <i>Small</i> , 2015 , 11, 1215-21	11	235
15	Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2015 , 179, 479-488	21.8	160
14	Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. <i>Advanced Materials</i> , 2014 , 26, 805-9	24	885
13	A facile synthesis of covalent carbon nitride photocatalysts by Co-polymerization of urea and phenylurea for hydrogen evolution. <i>Journal of Catalysis</i> , 2013 , 307, 246-253	7.3	157
12	Room temperature synthesis of heptazine-based microporous polymer networks as photocatalysts for hydrogen evolution. <i>Macromolecular Rapid Communications</i> , 2013 , 34, 1008-13	4.8	123
11	Layered nanojunctions for hydrogen-evolution catalysis. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3621-5	16.4	713
10	A 3D hybrid praseodymium-antimony-oxochloride compound: single-crystal-to-single-crystal transformation and photocatalytic properties. <i>Chemistry - A European Journal</i> , 2013 , 19, 15396-403	4.8	12
9	Layered Nanojunctions for Hydrogen-Evolution Catalysis. <i>Angewandte Chemie</i> , 2013 , 125, 3709-3713	3.6	99
8	Synthesis of Carbon Nitride Semiconductors in Sulfur Flux for Water Photoredox Catalysis. <i>ACS Catalysis</i> , 2012 , 2, 940-948	13.1	337

LIST OF PUBLICATIONS

7	Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. Journal of Materials Chemistry, 2012 , 22, 8083		730
6	Co-Monomer Control of Carbon Nitride Semiconductors to Optimize Hydrogen Evolution with Visible Light. <i>Angewandte Chemie</i> , 2012 , 124, 3237-3241	3.6	220
5	Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3183-7	16.4	624
4	Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13032		353
3	Fully Condensed Poly (Triazine Imide) Crystals: Extended EConjugation and Structural Defects for Overall Water Splitting. <i>Angewandte Chemie</i> ,	3.6	2
2	Gradient Zn-Doped Poly Heptazine Imides Integrated with a van der Waals Homojunction Boosting Visible Light-Driven Water Oxidation Activities. <i>ACS Catalysis</i> ,13463-13471	13.1	10
1	H2 and CH4 production from bio-alcohols using condensed poly(heptazine imide) with visible light. Journal of Materials Chemistry A,	13	2