Masahiro Murakami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7139739/publications.pdf

Version: 2024-02-01

402 papers

20,151 citations

76 h-index 20358 116 g-index

560 all docs

560 docs citations

560 times ranked 8333 citing authors

#	Article	IF	CITATIONS
1	Metal-catalysed cleavage of carbon–carbon bonds. Chemical Communications, 2011, 47, 1100-1105.	4.1	470
2	Cleavage of Carbonâ€"Carbon Single Bonds by Transition Metals. Topics in Organometallic Chemistry, 1999, , 97-129.	0.7	320
3	Potential of Metal-Catalyzed C–C Single Bond Cleavage for Organic Synthesis. Journal of the American Chemical Society, 2016, 138, 13759-13769.	13.7	281
4	Selective activation of carbon–carbon bonds next to a carbonyl group. Nature, 1994, 370, 540-541.	27.8	273
5	The Mukaiyama Aldol Reaction: 40â€Years of Continuous Development. Angewandte Chemie - International Edition, 2013, 52, 9109-9118.	13.8	245
6	Asymmetric Synthesis of 3,4-Dihydrocoumarins by Rhodium-Catalyzed Reaction of 3-(2-Hydroxyphenyl)cyclobutanones. Journal of the American Chemical Society, 2007, 129, 12086-12087.	13.7	243
7	Nickel-catalysed denitrogenative alkyne insertion reactions of N-sulfonyl-1,2,3-triazoles. Chemical Communications, 2009, , 1470.	4.1	236
8	Formation of carbocycles through sequential carborhodation triggered by addition of organoborons. Chemical Communications, 2007, , 217-224.	4.1	233
9	Synthesis of α-Amino Ketones from Terminal Alkynes via Rhodium-Catalyzed Denitrogenative Hydration of <i>N</i> -Sulfonyl-1,2,3-triazoles. Journal of the American Chemical Society, 2012, 134, 194-196.	13.7	233
10	Intramolecular Dearomatizing $[3+2]$ Annulation of α-Imino Carbenoids with Aryl Rings Furnishing 3,4-Fused Indole Skeletons. Journal of the American Chemical Society, 2014, 136, 2272-2275.	13.7	214
11	Catalyzed Intramolecular Olefin Insertion into a Carbonâ°Carbon Single Bond. Journal of the American Chemical Society, 2002, 124, 13976-13977.	13.7	211
12	Light-Driven Carboxylation of <i>o</i> -Alkylphenyl Ketones with CO ₂ . Journal of the American Chemical Society, 2015, 137, 14063-14066.	13.7	205
13	Synthesis of Tertiary Propargylamines by Sequential Reactions of in Situ Generated Thioiminium Salts with Organolithium and -magnesium Reagents. Journal of the American Chemical Society, 2004, 126, 5968-5969.	13.7	190
14	Cleavage of Carbon–Carbon σ-Bonds of Four-Membered Rings. Chemical Reviews, 2021, 121, 264-299.	47.7	190
15	Nickel-Catalyzed Intermolecular Alkyne Insertion into Cyclobutanones. Journal of the American Chemical Society, 2005, 127, 6932-6933.	13.7	189
16	Breaking of the Câ^'C Bond of Cyclobutanones by Rhodium(I) and Its Extension to Catalytic Synthetic Reactions. Journal of the American Chemical Society, 1996, 118, 8285-8290.	13.7	186
17	Synthesis of Enaminones by Rhodium-Catalyzed Denitrogenative Rearrangement of $1-(\langle i\rangle N-Sulfonyl-1,2,3-triazol-4-yl)alkanols. Journal of the American Chemical Society, 2012, 134, 17440-17443.$	13.7	180
18	Synthesis of Pyridineâ^'Borane Complexes via Electrophilic Aromatic Borylation. Journal of Organic Chemistry, 2010, 75, 8709-8712.	3.2	177

#	Article	IF	Citations
19	Palladium- and Nickel-Catalyzed Intramolecular Cyanoboration of Alkynes. Journal of the American Chemical Society, 2003, 125, 6358-6359.	13.7	176
20	Pyridineâ€Directed Palladiumâ€Catalyzed Phosphonation of C(sp ²)H Bonds. Angewandte Chemie - International Edition, 2013, 52, 9801-9804.	13.8	173
21	Eight-Membered Ring Construction by $[4+2+2]$ Annulation Involving \hat{I}^2 -Carbon Elimination. Journal of the American Chemical Society, 2006, 128, 2166-2167.	13.7	172
22	Oneâ€Pot Procedure for the Introduction of Three Different Bonds onto Terminal Alkynes through <i>N</i> â€Sulfonylâ€1,2,3â€Triazole Intermediates. Angewandte Chemie - International Edition, 2013, 52, 3883-3886.	13.8	165
23	Palladium-Catalyzed Addition of Cyanoboranes to Alkynes: Regio- and Stereoselective Synthesis of ?,?-Unsaturated ?-Boryl Nitriles. Angewandte Chemie - International Edition, 2005, 44, 2380-2382.	13.8	159
24	Synthesis of $1(2 < i > H < /i >)$ -Isoquinolones by the Nickel-Catalyzed Denitrogenative Alkyne Insertion of 1,2,3-Benzotriazin-4(3 < $i > H < /i >$)-ones. Organic Letters, 2008, 10, 3085-3088.	4.6	151
25	Atom―and Stepâ€Economical Pathway to Chiral Benzobicyclo[2.2.2]octenones through Carbon–Carbon Bond Cleavage. Angewandte Chemie - International Edition, 2012, 51, 2485-2488.	13.8	149
26	Stereoselective Synthesis of 2,3-Dihydropyrroles from Terminal Alkynes, Azides, and $\hat{l}\pm,\hat{l}^2$ -Unsaturated Aldehydes via <i>N</i> -Sulfonyl-1,2,3-triazoles. Journal of the American Chemical Society, 2013, 135, 13652-13655.	13.7	146
27	Enantioselective Câ^'C Bond Cleavage Creating Chiral Quaternary Carbon Centers. Organic Letters, 2006, 8, 3379-3381.	4.6	144
28	Rhodium-Catalyzed Annulation Reactions of 2-Cyanophenylboronic Acid with Alkynes and Strained Alkenes. Organic Letters, 2005, 7, 3339-3341.	4.6	141
29	Enantioselective Insertion of a Carbenoid Carbon into a C–C Bond To Expand Cyclobutanols to Cyclopentanols. Journal of the American Chemical Society, 2014, 136, 7217-7220.	13.7	141
30	Ketone Synthesis by Intramolecular Acylation of Organorhodium(I) with Ester. Journal of the American Chemical Society, 2005, 127, 1390-1391.	13.7	140
31	Regiocontrolled Synthesis of Polysubstituted Pyrroles Starting from Terminal Alkynes, Sulfonyl Azides, and Allenes. Organic Letters, 2013, 15, 3298-3301.	4.6	138
32	Enantioselective Synthesis of 3,4-Dihydroisoquinolin- $1(2 < i > H < /i >)$ -ones by Nickel-Catalyzed Denitrogenative Annulation of 1,2,3-Benzotriazin- $4(3 < i > H < /i >)$ -ones with Allenes. Journal of the American Chemical Society, 2010, 132, 54-55.	13.7	133
33	Palladium(II) acetate-tert-alkyl isocyanide as a highly efficient catalyst for the inter- and intramolecular bis-silylation of carbon-carbon triple bonds. Journal of Organic Chemistry, 1991, 56, 1948-1951.	3.2	132
34	Stereoselective intramolecular bis-silylation of alkenes promoted by a palladium-isocyanide catalyst leading to polyol synthesis. Journal of the American Chemical Society, 1993, 115, 6487-6498.	13.7	132
35	A Light/Ketone/Copper System for Carboxylation of Allylic Câ^'H Bonds of Alkenes with CO ₂ . Chemistry - A European Journal, 2016, 22, 6524-6527.	3.3	131
36	Ruthenium-Mediated Regio- and Stereoselective Alkenylation of Pyridine. Journal of the American Chemical Society, 2003, 125, 4720-4721.	13.7	130

3

#	Article	IF	CITATIONS
37	Rhodium(I)-Catalyzed Successive Double Cleavage of Carbonâ 'Carbon Bonds of Strained Spiro Cyclobutanones. Journal of the American Chemical Society, 1997, 119, 9307-9308.	13.7	128
38	Buttressing Salicylaldehydes: A Multipurpose Directing Group for C(sp ³)â^'H Bond Activation. Angewandte Chemie - International Edition, 2017, 56, 1073-1076.	13.8	125
39	Synthesis of Silafluorenes by Iridium-Catalyzed [2 + 2 + 2] Cycloaddition of Silicon-Bridged Diynes with Alkynes. Organic Letters, 2007, 9, 133-136.	4.6	124
40	Cleavage of Câ \in "C and Câ \in "Si Ï f -Bonds and Their Intramolecular Exchange. Journal of the American Chemical Society, 2014, 136, 5912-5915.	13.7	124
41	Synthesis of <i>gem</i> -Difluoroalkenes via β-Fluoride Elimination of Organorhodium(I). Chemistry Letters, 2008, 37, 1006-1007.	1.3	121
42	Rhodium-Catalyzed Ring Opening of Benzocyclobutenols with Site-Selectivity Complementary to Thermal Ring Opening. Journal of the American Chemical Society, 2012, 134, 17502-17504.	13.7	120
43	Stereoselective Restructuring of 3â€Arylcyclobutanols into 1â€Indanols by Sequential Breaking and Formation of Carbon–Carbon Bonds. Chemistry - A European Journal, 2009, 15, 12929-12931.	3.3	119
44	Iridium-Catalyzed $[5+1]$ Cycloaddition:Â Allenylcyclopropane as a Five-Carbon Assembling Unit. Journal of Organic Chemistry, 1998, 63, 4-5.	3.2	114
45	Rhodium-Catalyzed Cyclization of 1,6-Enynes Triggered by Addition of Arylboronic Acids. Journal of the American Chemical Society, 2005, 127, 1094-1095.	13.7	114
46	Oxidative Addition of a Strained C–C Bond onto Electron-Rich Rhodium(I) at Room Temperature. Journal of the American Chemical Society, 2013, 135, 7142-7145.	13.7	110
47	Dehydrogenative Coupling of Benzylic and Aldehydic C–H Bonds. Journal of the American Chemical Society, 2020, 142, 3366-3370.	13.7	110
48	Asymmetric Synthesis of Planar Chiral Ferrocenes by Enantioselective Intramolecular C–H Arylation of ⟨i⟩N⟨/i⟩-(2-Haloaryl)ferrocenecarboxamides. Organic Letters, 2014, 16, 5336-5338.	4.6	109
49	Construction of Carbon Frameworks through \hat{l}^2 -Carbon Elimination Mediated by Transition Metals. Bulletin of the Chemical Society of Japan, 2006, 79, 1315-1321.	3.2	107
50	Nickelâ€Catalyzed Regio―and Enantioselective Annulation Reactions of 1,2,3,4â€Benzothiatriazineâ€1,1(2 <i>H</i>)â€dioxides with Allenes. Angewandte Chemie - International Edition, 2010, 49, 4955-4957.	13.8	106
51	Enantioselective Polymerization of 1,2-Diisocyanoarenes—Synthesis of Optically Active, Helical Poly(quinoxaline-2,3-diyl)s. Angewandte Chemie International Edition in English, 1992, 31, 1509-1510.	4.4	105
52	Lactone Formation by Rhodium-Catalyzed Câ°'C Bond Cleavage of Cyclobutanone. Angewandte Chemie - International Edition, 2000, 39, 2484-2486.	13.8	105
53	Rhodium-Catalyzed Addition/Ring-Opening Reaction of Arylboronic Acids with Cyclobutanones. Organic Letters, 2004, 6, 1257-1259.	4.6	105
54	Carboxylation of Benzylic and Aliphatic C–H Bonds with CO ₂ Induced by Light/Ketone/Nickel. Journal of the American Chemical Society, 2019, 141, 19611-19615.	13.7	105

#	Article	IF	CITATIONS
55	Palladium-Catalyzed Intermolecular Exchange between C–C and C–Si σ-Bonds. Journal of the American Chemical Society, 2017, 139, 12414-12417.	13.7	102
56	Î ² -Scission of Alkoxy Radicals in Synthetic Transformations. Chemistry Letters, 2017, 46, 1692-1700.	1.3	101
57	New living polymerization of 1,2-diisocyanoarenes via (quinoxalinyl)palladium complexes. Synthesis of poly(2,3-quinoxaline). Journal of the American Chemical Society, 1990, 112, 6446-6447.	13.7	100
58	Enantioface-Selective Palladium-Catalyzed Silaboration of Allenes via Double Asymmetric Induction. Journal of the American Chemical Society, 2003, 125, 11174-11175.	13.7	100
59	Facile Synthesis of 2,5-Disubstituted Thiazoles from Terminal Alkynes, Sulfonyl Azides, and Thionoesters. Organic Letters, 2015, 17, 2454-2457.	4.6	100
60	Rhodium-catalysed addition of arylboronic acids to oxabenzonorbornadienesElectronic supplementary information (ESI) available: experimental data. See http://www.rsc.org/suppdata/cc/b1/b108808d/. Chemical Communications, 2002, , 390-391.	4.1	99
61	A Reaction of Triazoles with Thioesters to Produce βâ€Sulfanyl Enamides by Insertion of an Enamine Moiety into the Sulfur–Carbonyl Bond. Angewandte Chemie - International Edition, 2015, 54, 9967-9970.	13.8	99
62	Synthesis of Seven-Membered-Ring Ketones by Arylative Ring Expansion of Alkyne-Substituted Cyclobutanones. Angewandte Chemie - International Edition, 2005, 44, 4608-4611.	13.8	96
63	Palladium-Catalyzed Denitrogenation Reaction of 1,2,3-Benzotriazin-4(3 <i>H</i>)-ones Incorporating Isocyanides. Organic Letters, 2011, 13, 1429-1431.	4.6	92
64	Synthesis of Chiral <i>N</i> -Heterocyclic Carbene Ligands with Rigid Backbones and Application to the Palladium-Catalyzed Enantioselective Intramolecular α-Arylation of Amides. Organic Letters, 2011, 13, 1666-1669.	4.6	91
65	Aminoboranes as "Compatible―Iminium Ion Generators in Aminative Câ^'C Bond Formations. Journal of the American Chemical Society, 2004, 126, 13196-13197.	13.7	87
66	Stereoselective Synthesis of αâ€Allenols by Rhodiumâ€Catalyzed Reaction of Alkynyl Oxiranes with Arylboronic Acids. Angewandte Chemie - International Edition, 2007, 46, 7101-7103.	13.8	87
67	Enantioselective Synthesis of <i>anti</i> -1,2-Oxaborinan-3-enes from Aldehydes and 1,1-Di(boryl)alk-3-enes Using Ruthenium and Chiral Phosphoric Acid Catalysts. Journal of the American Chemical Society, 2017, 139, 10903-10908.	13.7	86
68	Palladium-catalyzed insertion of isocyanides into the silicon-silicon linkages of oligosilanes. Journal of the American Chemical Society, 1991, 113, 8899-8908.	13.7	85
69	Enantioselective Synthesis of (<i>E</i>)â€Î'â€Borylâ€Substituted <i>anti</i> êHomoallylic Alcohols Using Palladium and a Chiral Phosphoric Acid. Angewandte Chemie - International Edition, 2017, 56, 6989-6993.	13.8	85
70	Enantioselective Synthesis of Anti Homoallylic Alcohols from Terminal Alkynes and Aldehydes Based on Concomitant Use of a Cationic Iridium Complex and a Chiral Phosphoric Acid. Journal of the American Chemical Society, 2013, 135, 11497-11500.	13.7	84
71	Synthesis of <i>trans</i> Cycloalkenes via Enantioselective Cyclopropanation and Skeletal Rearrangement. Journal of the American Chemical Society, 2014, 136, 15905-15908.	13.7	84
72	New Domino Sequences Involving Successive Cleavage of Carbonâ^'Carbon and Carbonâ^'Oxygen Bonds:  Discrete Product Selection Dictated by Catalyst Ligands. Journal of the American Chemical Society, 1998, 120, 9949-9950.	13.7	83

#	Article	lF	Citations
73	Rhodium-Catalyzed Carbonylation of Spiropentanes. Journal of the American Chemical Society, 2007, 129, 12596-12597.	13.7	83
74	Rhodium-Catalyzed Intermolecular [4+2] Cycloaddition of Unactivated Substrates. Angewandte Chemie - International Edition, 1998, 37, 2248-2250.	13.8	82
75	1,5-Rhodium Shift in Rearrangement of <i>N</i> -Arenesulfonylazetidin-3-ols into Benzosultams. Journal of the American Chemical Society, 2013, 135, 19103-19106.	13.7	82
76	Catalytic Asymmetric $[4+1]$ Cycloaddition of Vinylallenes with Carbon Monoxide: Â Reversal of the Induced Chirality by the Choice of Metal. Journal of the American Chemical Society, 1999, 121, 4130-4135.	13.7	80
77	Nickel-catalysed intramolecular alkene insertion into cyclobutanones. Chemical Communications, 2006, , 4599.	4.1	80
78	Doyle–Kirmse Reaction Using Triazoles Leading to One-pot Multifunctionalization of Terminal Alkynes. Chemistry Letters, 2013, 42, 1308-1310.	1.3	79
79	Intramolecular bis-silylation of carbon-carbon double bonds leading to stereoselective synthesis of 1,2,4-triols. Journal of the American Chemical Society, 1991, 113, 3987-3988.	13.7	78
80	Stereoselective Synthesis of Isomeric Functionalized 1,3-Dienes from Cyclobutenones. Journal of the American Chemical Society, 2001, 123, 6441-6442.	13.7	77
81	New Catalyzed Three-Component Cycloadditions for the Synthesis of Eight-Membered Carbocycles. Angewandte Chemie - International Edition, 2003, 42, 718-720.	13.8	76
82	Ruthenium-Catalyzed <i>trans</i> -Hydrogermylation of Alkynes: Formation of 2,5-Disubstituted Germoles through Double <i>trans</i> -Hydrogermylation of 1,3-Diynes. Organic Letters, 2010, 12, 1056-1058.	4.6	75
83	Nickel-Catalyzed Denitrogenative Annulation Reactions of 1,2,3-Benzotriazin-4(3 <i>H</i>)-ones with 1,3-Dienes and Alkenes. Journal of Organic Chemistry, 2010, 75, 5359-5362.	3.2	75
84	Photocatalyzed <i>ortho</i> â€Alkylation of Pyridine <i>N</i> â€Oxides through Alkene Cleavage. Angewandte Chemie - International Edition, 2018, 57, 5139-5142.	13.8	75
85	Ruthenium-catalysed double trans-hydrosilylation of 1,4-diarylbuta-1,3-diynes leading to 2,5-diarylsiloles. Chemical Communications, 2007, , 2627.	4.1	74
86	TRITYL SALTS AS EFFICIENT CATALYSTS IN THE ALDOL REACTION. Chemistry Letters, 1985, 14, 1535-1538.	1.3	73
87	Enantioselective $[2+2+2]$ Cycloaddition Reaction of Isocyanates and Allenes Catalyzed by Nickel. Journal of the American Chemical Society, 2010, 132, 15836-15838.	13.7	73
88	Palladium-Catalyzed Sequential Carbonâ^'Carbon Bond Cleavage/Formation Producing Arylated Benzolactones. Organic Letters, 2008, 10, 5219-5221.	4.6	72
89	Copper-Catalyzed Amination of Silyl Ketene Acetals with <i>N</i> -Chloroamines. Organic Letters, 2012, 14, 5214-5217.	4.6	72
90	Generation and alkylation of carbanions .alpha. to the nitrogen of amines by a new metallation procedure. Journal of Organic Chemistry, 1992, 57, 793-794.	3.2	71

#	Article	IF	Citations
91	Stereoselective Synthesis of 3-Alkylideneoxindoles by Rhodium-Catalyzed Cyclization Reaction of 2-Alkynylaryl Isocyanates with Aryl- and Alkenylboronic Acids. Organic Letters, 2007, 9, 5075-5077.	4.6	71
92	AN EFFICIENT METHOD FOR THE PREPARATION OFTHREOCROSS-ALDOLS FROM SILYL ENOL ETHERS AND ALDEHYDES USING TRITYL PERCHLORATE AS A CATALYST. Chemistry Letters, 1985, 14, 447-450.	1.3	70
93	New Synthesis of Quinoxaline Derivatives Based on Palladium Catalyzed Oligomerization of 1,2-Diisocyanoarenes. Heterocycles, 1996, 42, 597.	0.7	70
94	Synthesis of acylsilanes via silastannation of alkynes by a palladium-isocyanide catalyst. Organometallics, 1993, 12, 4223-4227.	2.3	69
95	sp ³ –sp ² vs sp ³ –sp ³ C–C Site Selectivity in Rh-Catalyzed Ring Opening of Benzocyclobutenol: A DFT Study. Journal of the American Chemical Society, 2014, 136, 169-178.	13.7	69
96	Ring-opening Fluorination of Cyclobutanols and Cyclopropanols Catalyzed by Silver. Chemistry Letters, 2015, 44, 821-823.	1.3	69
97	Synthesis of \hat{l}_{\pm} -keto esters by the rhodium-catalysed reaction of cyanoformate with arylboronic acids. Chemical Communications, 2007, , 2855-2857.	4.1	68
98	Syntheses and Interconversion of [Bis(silyl)alkene]palladium(0) and Bis(silyl)palladium(II) Complexes: A Mechanistic Model for Palladium-Catalyzed Bis-Silylation. Organometallics, 1994, 13, 2900-2902.	2.3	67
99	Rhodium-Catalyzed Asymmetric [4 + 1] Cycloaddition. Journal of the American Chemical Society, 1997, 119, 2950-2951.	13.7	67
100	A Silyl Substituent Can Dictate a Concerted Electrocyclic Pathway: Inward Torquoselectivity in the Ring Opening of 3-Silyl-1-cyclobutene. Angewandte Chemie - International Edition, 2001, 40, 189-190.	13.8	66
101	40 Jahre Mukaiyamaâ€Aldolreaktion: eine Erfolgsgeschichte. Angewandte Chemie, 2013, 125, 9280-9289.	2.0	65
102	Rhodium-catalysed substitutive arylation of cis-allylic diols with arylboroxines. Chemical Communications, 2007, , 595-597.	4.1	64
103	Direct Production of Enaminones from Terminal Alkynes via Rhodium-Catalyzed Reaction of Formamides with <i>N</i> -Sulfonyl-1,2,3-triazoles. Organic Letters, 2014, 16, 2760-2763.	4.6	64
104	Directed Intermolecular [4 + 2] Cycloaddition of Unactivated 1,3-Diene Substrates with High Regio- and Stereoselectivities. Journal of the American Chemical Society, 1997, 119, 7163-7164.	13.7	63
105	Stereoselective Synthesis of (<i>E</i>)-(Trisubstituted alkenyl)borinic Esters: Stereochemistry Reversed by Ligand in the Palladium-Catalyzed Reaction of Alkynylborates with Aryl Halides. Organic Letters, 2009, 11, 5434-5437.	4.6	63
106	Ruthenium-catalyzed coupling of unactivated olefins with unactivated alkynes. Tetrahedron Letters, 1998, 39, 7361-7364.	1.4	62
107	Synthesis, Structure, and Reaction of the First Thermally Stable cis-(Silyl)(stannyl)palladium(II) Complex. Journal of the American Chemical Society, 1995, 117, 6408-6409.	13.7	60
108	A Study of the Stereochemical Course of -Oxygen Elimination with a Rhodium(I) Complex. Helvetica Chimica Acta, 2002, 85, 4182-4188.	1.6	60

#	Article	IF	CITATIONS
109	Intramolecular nucleophilic addition of an organorhodium(i) to a nitrile. Chemical Communications, 2005, , 2855.	4.1	60
110	Gold-catalysed intramolecular trans-allylsilylation of alkynes forming 3-allyl-1-silaindenes. Chemical Communications, 2008, , 2744.	4.1	60
111	TRITYL PERCHLORATE AS AN EFFICIENT CATALYST IN THE ALDOL-TYPE REACTION. Chemistry Letters, 1984, 13, 1759-1762.	1.3	59
112	Theoretical Study on the Reaction Mechanism and Regioselectivity of Silastannation of Acetylenes with a Palladium Catalyst. Journal of the American Chemical Society, 1994, 116, 8754-8765.	13.7	59
113	Reactivity Change of Cyclobutanols towards Isocyanates: Rhodium Favors ⟨i⟩C⟨ i⟩â€Carbamoylation over ⟨i⟩O⟨ i⟩â€Carbamoylation. Angewandte Chemie - International Edition, 2013, 52, 11875-11878.	13.8	59
114	anion. Journal of the American Chemical Society, 1990, 112, 2437-2439.	13.7	58
115	A Study on Rhodium– Vinylallene Complexes Leading to a New Reaction, Rhodium-Catalyzed Carbonylative[4 + 1]Cycloaddition. Angewandte Chemie International Edition in English, 1996, 34, 2691-2694.	4.4	58
116	Eight-membered Ring Formation via Olefin Insertion into a Carbon–Carbon Single Bond. Chemistry Letters, 2004, 33, 876-877.	1.3	57
117	Rhodiumâ€Catalyzed Dehydrogenative Borylation of Aliphatic Terminal Alkenes with Pinacolborane. Angewandte Chemie - International Edition, 2015, 54, 12659-12663.	13.8	57
118	Synthesis of 1H-Inden-1-ol Derivatives via Rhodium-catalyzed Annulation ofo-Acylphenylboronic Acids with Alkynes. Chemistry Letters, 2005, 34, 1416-1417.	1.3	56
119	Vinylcyclopropanation of Olefins via 3-Methoxy-1-propenylrhodium(I). Journal of the American Chemical Society, 2006, 128, 2516-2517.	13.7	56
120	Oneâ€Pot Synthesis of 2,5â€Dihydropyrroles from Terminal Alkynes, Azides, and Propargylic Alcohols by Relay Actions of Copper, Rhodium, and Gold. Chemistry - A European Journal, 2014, 20, 16078-16082.	3.3	56
121	Acyl 1,3-Migration in Rhodium-Catalyzed Reactions of Acetylenic \hat{l}^2 -Ketoesters with Aryl Boronic Acids: Application to Two-Carbon-Atom Ring Expansions. Angewandte Chemie - International Edition, 2005, 44, 7598-7600.	13.8	54
122	Asymmetric Carroll rearrangement of allyl \hat{l} ±-acetamido- \hat{l} 2-ketocarboxylates catalysed by a chiral palladium complex. Chemical Communications, 2005, , 3951.	4.1	54
123	Stereoselective Synthesis of 3-Alkylideneoxindoles by Palladium-Catalyzed Cyclization Reaction of 2-(Alkynyl)aryl Isocyanates with Organoboron Reagents. Organic Letters, 2008, 10, 4887-4889.	4.6	54
124	Palladium-Catalyzed Intramolecular Insertion of Alkenes into the Carbon–Nitrogen Bond of β-Lactams. Journal of the American Chemical Society, 2015, 137, 8708-8711.	13.7	54
125	Studies on the conformation of helical poly(2,3-quinoxalines). Empirical energy calculation and theoretical circular dichroism. Macromolecules, 1992, 25, 6810-6813.	4.8	53
126	Coordination Modes and Catalytic Carbonylative [4 + 1] Cycloaddition of Vinylallenes. Organometallics, 1999, 18, 1326-1336.	2.3	53

#	Article	IF	Citations
127	Stereospecific ring expansion from orthocyclophanes with central chirality to metacyclophanes with planar chirality. Nature Communications, 2014, 5, 3111.	12.8	53
128	THE TRITYL PERCHLORATE CATALYZED MICHAEL REACTION. Chemistry Letters, 1985, 14, 953-956.	1.3	52
129	Stereoselective Synthesis of <i>syn</i> -Configured α-Allenols by Rhodium-Catalyzed Reaction of Alkynyl Oxiranes with Arylboronic Acids. Journal of Organic Chemistry, 2009, 74, 6050-6054.	3.2	52
130	Stereoselective synthesis of 1,2,4-triols via intramolecular bis-silylation of Carbonî—,Carbon triple bonds followed by hydrogenation. Tetrahedron, 1993, 49, 3933-3946.	1.9	51
131	Intramolecular σ-Bond Metathesis Between Carbon–Carbon and Silicon–Silicon Bonds. Organic Letters, 2012, 14, 3230-3232.	4.6	51
132	Synthesis of Enantiopure Dehydropiperidinones from \hat{l}_{\pm} -Amino Acids and Alkynes via Azetidin-3-ones. Organic Letters, 2012, 14, 3898-3901.	4.6	51
133	Facile synthesis of vicinal di- and tricarbonyl compounds by samarium diiodide-mediated double insertion of isocyanides into organic halides. Journal of Organic Chemistry, 1991, 56, 1-2.	3.2	50
134	Solarâ€Driven Incorporation of Carbon Dioxide into αâ€Amino Ketones. Angewandte Chemie - International Edition, 2012, 51, 11750-11752.	13.8	50
135	Synthesis of 3,3-disubstituted α-tetralones by rhodium-catalysed reaction of 1-(2-haloaryl)cyclobutanols. Chemical Communications, 2012, 48, 1973.	4.1	50
136	Selective Functionalization of Aromatic C(sp ²)â^'H Bonds in the Presence of Benzylic C(sp ³)â''H Bonds by Electronâ€Deficient Carbenoids Generated from 4â€Acylâ€1â€Sulfonylâ€1,2,3â€Triazoles. Angewandte Chemie - International Edition, 2017, 56, 16645-16649.	13.8	50
137	Molybdenum-Catalyzed Ring-Closing Metathesis of Allenynes. Organic Letters, 2005, 7, 3953-3956.	4.6	49
138	Rhodium-Catalyzed Borylative Cyclization of 2-Alkynylaryl Isocyanates with Bis(pinacolato)diboron. Organic Letters, 2008, 10, 1743-1745.	4.6	49
139	Synthesis of Amineâ^'Borane Intramolecular Complexes through Palladium-Catalyzed Rearrangement of Ammonioalkynyltriarylborates. Organic Letters, 2008, 10, 1279-1281.	4.6	49
140	A FACILE SYNTHESIS OF HOMOALLYL ETHERS. THE REACTION OF ACETALS WITH ALLYLTRIMETHYLSILANES PROMOTED BY TRITYL PERCHLORATE OR DIPHENYLBORYL TRIFLATE. Chemistry Letters, 1985, 14, 977-980.	1.3	48
141	Synthesis of .alphahydroxy ketones by samarium(II) iodide-mediated coupling of organic halides, an isocyanide, and carbonyl compounds. Journal of Organic Chemistry, 1993, 58, 1458-1465.	3.2	48
142	Contrasteric Stereochemical Dictation of the Cyclobutene Ring-Opening Reaction by a Vacant Boron p Orbital. Journal of the American Chemical Society, 2005, 127, 1366-1367.	13.7	48
143	Activation of a Cyclobutanone Carbon–Carbon Bond over an Aldehyde Carbon–Hydrogen Bond in the Rhodium-catalyzed Decarbonylation. Chemistry Letters, 2006, 35, 288-289.	1.3	48
144	A CONVENIENT METHOD FOR THE PREPARATION OF \hat{I}^3 -KETOSULFIDES FROM THIOACETALS. Chemistry Letters, 1985, 14, 1871-1874.	1.3	47

#	Article	IF	Citations
145	Palladium-catalyzed regular insertion of isonitriles into silicon-silicon linkage of polysilane. Journal of the American Chemical Society, 1988, 110, 3692-3693.	13.7	47
146	Addition/Ring-Opening Reaction of Organoboronic Acids to Cyclobutanones Catalyzed by Rhodium(I)/P(t-Bu)3Complex. Bulletin of the Chemical Society of Japan, 2005, 78, 1528-1533.	3.2	47
147	A Mechanism for the Palladium-Catalyzed Regioselective Silaboration of Allene: A Theoretical Study. Organometallics, 2008, 27, 1736-1742.	2.3	47
148	Construction of tetralin skeletons based on rhodium-catalysed site-selective ring opening of benzocyclobutenols. Chemical Communications, 2015, 51, 1882-1885.	4.1	47
149	Nickel-Catalyzed [4+2+2]-Type Annulation Reaction of Cyclobutanones with Diynes and Enynes. Bulletin of the Chemical Society of Japan, 2008, 81, 885-893.	3.2	46
150	Single-Step Construction of a Nine-Membered Carbocycle by a New [4+4+1] Cycloaddition. Angewandte Chemie - International Edition, 1998, 37, 3418-3420.	13.8	44
151	The stereoselective synthesis of $\hat{l}\pm$ -amino aldols starting from terminal alkynes. Chemical Communications, 2014, 50, 10474-10477.	4.1	44
152	N-Substituted organo(silyliminomethyl)stannanes: synthetic equivalent to organosilylcarbonyl anion and carbonyl dianion. Journal of the American Chemical Society, 1987, 109, 7888-7890.	13.7	43
153	Cyclization Reaction of Cyano-Substituted Unsaturated Esters Prompted by Conjugate Addition of Organoborons. Organic Letters, 2007, 9, 741-743.	4.6	43
154	Stereoselective Oxindole Synthesis by Palladium-Catalyzed Cyclization Reaction of 2-(Alkynyl)aryl Isocyanates with Amides. Organic Letters, 2009, 11, 2141-2143.	4.6	43
155	Rhodiumâ€Catalyzed Reaction of 1â€Alkenylboronates with Aldehydes Leading to Allylation Products. Angewandte Chemie - International Edition, 2011, 50, 11465-11469.	13.8	43
156	Solvent and ligand partition reaction pathways in nickel-mediated carboxylation of methylenecyclopropanes. Chemical Communications, 2006, , 643.	4.1	42
157	Two-carbon ring expansion of cyclobutanone skeletons by nickel-catalyzed intermolecular alkyne insertion. Tetrahedron, 2006, 62, 7540-7546.	1.9	42
158	Synthesis of Oxindoles by Palladium-catalyzed C–H Bond Amidation. Chemistry Letters, 2009, 38, 328-329.	1.3	42
159	A <i>syn</i> â€Selective Azaâ€Aldol Reaction of Boron Azaâ€Enolates Generated from <i>N</i> â€Sulfonylâ€1,2,3â€Triazoles and 9â€BBNâ€H. Angewandte Chemie - International Edition, 2016, 55, 8732-8735.	13.8	42
160	A NEW ALDOL REACTION: A METHOD FOR THE GENERATION OF VINYLOXYBORANES BY THE ACYLATION OF BORON-STABILIZED CARBANIONS. Chemistry Letters, 1981, 10, 1193-1196.	1.3	41
161	Reactions of Cyanoboranes with a Palladiumâ^'PMe3Complex:Â Mechanism for the Catalytic Cyanoboration of Alkynes. Organometallics, 2006, 25, 2911-2913.	2.3	41
162	Stereoselective synthesis of 2-amino alcohols by use of an isocyanide as an aminomethylene equivalent. Journal of Organic Chemistry, 1993, 58, 6766-6770.	3.2	40

#	Article	IF	CITATIONS
163	Rhodium-catalysed addition reaction of aryl- and alkenylboronic acids to isocyanates. Chemical Communications, 2007, , 3577.	4.1	40
164	Nickelâ€Catalyzed Denitrogenative Annulation of 1,2,3â€Benzotriazinâ€4â€(3 <i>H</i>)â€ones with Benzynes for Construction of Phenanthridinone Scaffolds. Advanced Synthesis and Catalysis, 2018, 360, 284-289.	4.3	39
165	Synthesis of (Vinylallene)rhodium(III) Complex of Planar Structure:  Perfect π → σ Conversion of 1,3-Diene System. Journal of the American Chemical Society, 1996, 118, 11672-11673.	13.7	38
166	Theoretical and Experimental Studies on the Thermal Ring-Opening Reaction of Cyclobutene Having a Stannyl Substituent at the 3-Position. Journal of Organic Chemistry, 2004, 69, 587-590.	3.2	38
167	Synthesis and Reactions of Cyclic Silylboranes. Bulletin of the Chemical Society of Japan, 2005, 78, 323-326.	3.2	38
168	Rhodium-Catalyzed Cascade Reaction of 1,6-Enynes Involving Addition, Cyclization, and \hat{I}^2 -Oxygen Elimination. Chemistry - an Asian Journal, 2006, 1, 868-877.	3.3	38
169	Rhodium-catalyzed arylative cyclization of alkynones induced by addition of arylboronic acids. Tetrahedron, 2007, 63, 6131-6140.	1.9	38
170	A Facile Synthesis of 1,5-Dienes and \hat{l}^2 , \hat{l}^3 -Unsaturated Nitriles via Trityl Perchlorate-Catalyzed Allylation. Chemistry Letters, 1987, 16, 1167-1170.	1.3	37
171	Reactions of (Triphenylphosphine)gold(I) Enolates and Homoenolates. Bulletin of the Chemical Society of Japan, 1988, 61, 3649-3652.	3.2	37
172	Non-Twisted Tetrakis(organosilyl)ethene. Angewandte Chemie International Edition in English, 1993, 32, 1473-1475.	4.4	37
173	Dramatic Effects of Boryl Substituents on Thermal Ring-Closing Reaction of Vinylallenes. Journal of the American Chemical Society, 2004, 126, 10838-10839.	13.7	37
174	Stereoselective synthesis of trisubstituted alkenylboranes by palladium-catalysed reaction of alkynyltriarylborates with aryl halides. Chemical Communications, 2007, , 4381.	4.1	37
175	Diastereo―and Enantioselective Synthesis of (E)â€Îâ€Borylâ€Substituted anti â€Homoallylic Alcohols in Two Steps from Terminal Alkynes. Angewandte Chemie - International Edition, 2019, 58, 14620-14624.	13.8	37
176	A Remarkable Effect of Silyl Substitution on Electrocyclization of Vinylallenes. Angewandte Chemie International Edition in English, 1995, 34, 1476-1477.	4.4	36
177	A New Look at Boron Enolate Chemistry:  Aminative CⰰC Bond Formation Using Diaminoboron Enolate with Aldehyde. Organic Letters, 2004, 6, 1167-1169.	4.6	36
178	Synthesis of Pyrenes by Twofold Hydroarylation of 2,6-Dialkynylbiphenyls. Chemistry Letters, 2011, 40, 40-41.	1.3	36
179	Synthesis of Penta-2,4-dien-1-imines and 1,2-Dihydropyridines by Rhodium-Catalyzed Reaction of <i>N</i> -Sulfonyl-1,2,3-triazoles with 2-(Siloxy)furans. Organic Letters, 2016, 18, 6284-6287.	4.6	36
180	Intramolecular cyanoboration of alkynes via activation of boron–cyanide bonds by transition metal catalysts. Journal of Organometallic Chemistry, 2005, 690, 5300-5308.	1.8	35

#	Article	IF	CITATIONS
181	Synthesis of Pyridine-N-oxide–Borane Intramolecular Complexes by Palladium-Catalyzed Reaction of 2-Bromopyridine-N-oxides with Alkynyltriarylborates. Organic Letters, 2011, 13, 3008-3011.	4.6	35
182	Palladium-catalyzed coupling of N-substituted isocyanide dichlorides with alkynyltin compounds: New synthesis of dialkynylketones. Tetrahedron Letters, 1988, 29, 5379-5382.	1.4	33
183	Convenient preparative method and crystal structures of (tripenylphosphine)gold(I) enolate and homoenolate complexes. Journal of Organometallic Chemistry, 1988, 342, C41-C44.	1.8	33
184	Synthesis and Thermal Ring Opening oftrans-3,4-Disilylcyclobutene. Angewandte Chemie - International Edition, 2004, 43, 4874-4876.	13.8	33
185	Construction of Homoallylic Alcohols from Terminal Alkynes and Aldehydes with Installation of <i>syn</i> -Stereochemistry. Journal of the American Chemical Society, 2014, 136, 6223-6226.	13.7	33
186	Cooperation of a Nickel–Bipyridine Complex with Light for Benzylic Câ^'H Arylation of Toluene Derivatives. Asian Journal of Organic Chemistry, 2017, 6, 669-672.	2.7	33
187	Synthesis of 2-Aryloxy-1,3-dienes from Phenols and Propargyl Carbonates. Journal of the American Chemical Society, 2019, 141, 84-88.	13.7	33
188	C1 Oxidation/C2 Reduction Isomerization of Unprotected Aldoses Induced by Light/Ketone. Angewandte Chemie - International Edition, 2020, 59, 2755-2759.	13.8	33
189	Palladium-Catalyzed Coupling Reactions of N-Methoxy-N-methylcarbamoyl Chloride for the Synthesis of N-Methoxy-N-methylamides. Chemistry Letters, 1998, 27, 163-164.	1.3	32
190	Palladium-catalysed asymmetric $[4+2]$ cycloaddition of vinylallene with 1,3-diene. Chemical Communications, 2000, , 2293-2294.	4.1	32
191	Studies on the Thermal Ring-Opening Reactions ofcis-3,4-Bis(organosilyl)cyclobutenes. Journal of Organic Chemistry, 2007, 72, 3764-3769.	3.2	32
192	Eine Studie zur Koordination von Vinylallenen und zu einer Folgereaktion – der neuen Rhodiumâ€katalysierten carbonylierenden [4 + 1] ycloaddition. Angewandte Chemie, 1995, 107, 2943-2946.	2.0	31
193	Synthesis of 3-Acyl-4-alkenylpyrrolidines by Platinum-Catalyzed Hydrative Cyclization of Allenynes. Helvetica Chimica Acta, 2006, 89, 1672-1680.	1.6	31
194	Aryl Ketones as Singleâ€Electronâ€Transfer Photoredox Catalysts in the Nickelâ€Catalyzed Homocoupling of Aryl Halides. European Journal of Organic Chemistry, 2016, 2016, 5822-5825.	2.4	31
195	Synthesis of (.+)alphaallokainic acid via the zinc acetate catalyzed cyclization of .gammaisocyano silyl enolates. Journal of Organic Chemistry, 1991, 56, 7356-7360.	3.2	30
196	Rhodium-catalyzed Reactions of Cyclobutanones with Alcohols and Amines Forming Esters and Amides. Chemistry Letters, 2007, 36, 744-745.	1.3	30
197	Stereoselective Synthesis of αâ€Allenols by Rhodiumâ€Catalyzed Reaction of Alkynyl Oxiranes with Arylboronic Acids. Angewandte Chemie, 2007, 119, 7231-7233.	2.0	30
198	Gold-catalysed alkenyl- and arylsilylation reactions forming 1-silaindenes. Chemical Communications, 2011, 47, 8697.	4.1	30

#	Article	IF	Citations
199	Nickel-Catalyzed Synthesis of 1,3,5-Trisubstituted Hydantoins from Acrylates and Isocyanates. Organic Letters, 2011, 13, 3560-3563.	4.6	30
200	Synthesis of Phenanthridinones and Phenanthridine Derivatives through Palladium-catalyzed Oxidative C–H Coupling of Benzanilides. Chemistry Letters, 2011, 40, 1047-1049.	1.3	30
201	Enantioselective Construction of 3â€Hydroxypiperidine Scaffolds by Sequential Action of Light and Rhodium upon Nâ€Allylglyoxylamides. Angewandte Chemie - International Edition, 2015, 54, 7418-7421.	13.8	30
202	Rutheniumâ€Catalyzed Cycloisomerization of 2,2′â€Diethynyl―biphenyls Involving Cleavage of a Carbon–Carbon Triple Bond. Chemistry - A European Journal, 2016, 22, 1941-1943.	3.3	30
203	Enantioselective Synthesis of (<i>E</i>)â€Î²â€Borylâ€Substituted <i>anti</i> êHomoallylic Alcohols Using Palladium and a Chiral Phosphoric Acid. Angewandte Chemie, 2017, 129, 7093-7097.	2.0	30
204	Photoinduced Specific Acylation of Phenolic Hydroxy Groups with Aldehydes. Angewandte Chemie - International Edition, 2020, 59, 18267-18271.	13.8	30
205	Generation of (?-aminoalkyl)samarium(III) by a new method of metalation and its carbon-carbon bond-forming reactions. Applied Organometallic Chemistry, 1995, 9, 385-397.	3.5	29
206	Acids Direct 2-Styrylcyclobutanone into Two Distinctly Different Reaction Pathways. Organic Letters, 2005, 7, 2059-2061.	4.6	29
207	Synthesis of Enantiopure <i>C</i> ₃ â€Symmetric Triangular Molecules. Angewandte Chemie - International Edition, 2017, 56, 3334-3338.	13.8	29
208	Enantioselective Denitrogenative Annulation of 1 <i>H</i> à€Tetrazoles with Styrenes Catalyzed by Rhodium. Angewandte Chemie - International Edition, 2018, 57, 5497-5500.	13.8	29
209	Preparation of [1-(arylimino)alkyl]zinc by the .alphaaddition of organozinc to isocyanide. Journal of Organic Chemistry, 1988, 53, 4158-4159.	3.2	28
210	Buttressing Salicylaldehydes: A Multipurpose Directing Group for C(sp ³)â^'H Bond Activation. Angewandte Chemie, 2017, 129, 1093-1096.	2.0	28
211	Photocatalyzed <i>ortho</i> â€Alkylation of Pyridine <i>N</i> â€Oxides through Alkene Cleavage. Angewandte Chemie, 2018, 130, 5233-5236.	2.0	28
212	A NEW METHOD FOR THE GENERATION OF A BORON ENOLATE OF AN ESTER—A NEW SYNTHESIS OF 2-DEOXY-D-RIBOSE—. Chemistry Letters, 1982, 11, 241-244.	1.3	27
213	Rhodium-catalysed 1,4-addition of diarylindium hydroxides to $\hat{l}\pm,\hat{l}^2$ -unsaturated carbonyl compounds. Chemical Communications, 2005, , 5676.	4.1	27
214	Palladium-Catalyzed Allylation Reaction of Alkynylborates. Bulletin of the Chemical Society of Japan, 2010, 83, 1380-1385.	3.2	27
215	Synthesis of 3,3-Disubstituted Oxindoles by Palladium-Catalyzed Tandem Reaction of 2-(Alkynyl)aryl Isocyanates with Benzylic Alcohols. Organic Letters, 2010, 12, 4584-4587.	4.6	27
216	Synthesis of Elongated Esters from Alkenes. Angewandte Chemie - International Edition, 2018, 57, 15455-15459.	13.8	27

#	Article	IF	CITATIONS
217	Synthesis of γâ€Borylâ€Substituted Homoallylic Alcohols with anti Stereochemistry Based on a Doubleâ€Bond Transposition. Angewandte Chemie - International Edition, 2019, 58, 1138-1142.	13.8	27
218	THE DIPHENYLBORYL HEXACHLOROANTIMONATE PROMOTED FRIEDEL–CRAFTS ACYLATION REACTION. Chemistry Letters, 1986, 15, 165-168.	1.3	26
219	Preparation of 2,2-Dichloro-3(2H)-furanone and Its Reactions with Heteronucleophiles. Journal of Organic Chemistry, 1994, 59, 7910-7914.	3.2	26
220	Rhodium-catalysed cyclisation reaction of allenynes with arylboronic acids. Chemical Communications, 2008, , 5366.	4.1	26
221	Living Polymerization of 1,2-Diisocyanoarenes Promoted by (Quinoxalinyl)nickel Complexes Polymer Journal, 1992, 24, 297-299.	2.7	26
222	The palladium-catalysed reaction of disilanylstannanes with alkynes. Journal of the Chemical Society Chemical Communications, 1990, , 428.	2.0	25
223	Synthesis of \hat{l}^2 -Amino Acid Derivatives by Nickel(0)-mediated Sequential Addition of Carbon Dioxide and Dibenzoyldiazene onto Unsaturated Hydrocarbons. Chemistry Letters, 2007, 36, 476-477.	1.3	25
224	Preparation of 2-Sulfonyl-1,2,3-triazoles by Base-Promoted 1,2-Rearrangement of a Sulfonyl Group. Heterocycles, 2010, 80, 177.	0.7	25
225	Selective 1:2 Coupling of Aldehydes and Allenes with Control of Regiochemistry. Angewandte Chemie - International Edition, 2011, 50, 10436-10439.	13.8	25
226	Photoinduced Dearomatizing Threeâ€Component Coupling of Arylphosphines, Alkenes, and Water. Angewandte Chemie - International Edition, 2021, 60, 3551-3555.	13.8	25
227	Synthesis of novel thermotropic liquid crystalline poly(2,3-quinoxalines). Macromolecules, 1992, 25, 6711-6713.	4.8	24
228	Racemization and Deracemization of Poly(quinoxaline-2,3-diyl)s. Bulletin of the Chemical Society of Japan, 1997, 70, 2801-2806.	3.2	24
229	New synthesis of macrocyclic dialkynyl imines. Journal of Organic Chemistry, 1990, 55, 2567-2568.	3.2	23
230	Stereoselective synthesis of vinyl-substituted (Z)-stilbenes by rhodium-catalysed addition of arylboronic acids to allenic alcohols. Organic and Biomolecular Chemistry, 2010, 8, 4074.	2.8	23
231	Pd-Catalyzed Ring-Closing/Ring-Opening Cross Coupling Reactions: Enantioselective Diarylation of Unactivated Olefins. ACS Catalysis, 2021, 11, 8942-8947.	11.2	23
232	2-BENZYLOXY-1-PROPENE: A NOVEL PROTECTIVE REAGENT OF HYDROXYL GROUPS. Chemistry Letters, 1984, 13, 265-266.	1.3	22
233	A NOVEL METHOD FOR THE STEREOSELECTIVE SYNTHESIS OF β-AMINOACID DERIVATIVES VIA TIN(II) CARBOXYLIC THIOESTER ENOLATES. Chemistry Letters, 1986, 15, 1013-1016.	1.3	22
234	A Preparative Method foro-Diisocyanoarenes. Synthesis, 1988, 1988, 714-715.	2.3	22

#	Article	IF	Citations
235	Ruthenium-Mediated Domino Sequence Forming Six-Membered Ring Diene from Ene-Yne and Alkene. Chemistry Letters, 2002, 31, 294-295.	1.3	22
236	Iterative Approach to Oligo(arylenevinylene)s Containing Tetrasubstituted Vinylene Units. Organic Letters, 2010, 12, 3179-3181.	4.6	22
237	Synthesis of cross-conjugated trienes by rhodium-catalyzed dimerization of monosubstituted allenes. Beilstein Journal of Organic Chemistry, 2011, 7, 578-581.	2.2	22
238	Azulenophenanthrenes from 2,2′â€Di(arylethynyl)biphenyls through CC Bond Cleavage of a Benzene Ring. Angewandte Chemie - International Edition, 2013, 52, 6492-6495.	13.8	22
239	Screw-sense selective self-propelling polymerizations producing chiral poly(quinoxaline-2,3-diyl)s. Tetrahedron Letters, 1993, 34, 8279-8282.	1.4	21
240	Synthesis and Structural Analysis of Oligo(naphthalene-2,3-diyl)s. Bulletin of the Chemical Society of Japan, 2005, 78, 142-146.	3.2	21
241	Site-Selective Introduction of an Enamido Group at the C(3)-Position of Indoles. Heterocycles, 2015, 91, 1579.	0.7	21
242	2â€Arylsilacyclobutane as a Latent Carbanion Reacting with CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 11399-11403.	13.8	21
243	Sustainable System for Hydrogenation Exploiting Energy Derived from Solar Light. Journal of the American Chemical Society, 2021, 143, 2217-2220.	13.7	21
244	Planar chiral 2-(trifluoromethyl)quinoline-fused ferrocenes via palladium(0)-catalyzed C-H functionalization of trifluoroacetimidoyl chlorides. Green Synthesis and Catalysis, 2021, 2, 311-314.	6.8	21
245	AN EFFECTIVE ACTIVATION OF ALLYL METHYL ETHERS BY A CATALYTIC AMOUNT OF TRITYL PERCHLORATE IN THE ALLYLATION OF SILYL ENOL ETHERS. Chemistry Letters, 1986, 15, 1009-1012.	1.3	20
246	Fluoride catalyzed Michael reaction of \hat{l} ±-isocyanoesters with \hat{l} ±, \hat{l} 2-unsaturated carbonyl compounds. Tetrahedron Letters, 1989, 30, 1257-1260.	1.4	20
247	Rhodiumâ€eatalyzed restructuring of carbon frameworks. Chemical Record, 2010, 10, 326-331.	5.8	20
248	Asymmetric Synthesis and Stereochemical Assignment of $\sup 12 \le y \le 13 \le y \le y \le 13 \le y \le 13$	13.7	20
249	Conjugate addition of N-substituted organo(silyliminomethyl) copper(l) to \hat{l}_{\pm},\hat{l}^2 -unsaturated carbonyl compounds. Tetrahedron Letters, 1988, 29, 355-358.	1.4	19
250	Aromatizing oligomerization of 1,2-di-isocyanoarene to quinoxaline oligomers. Journal of the Chemical Society Chemical Communications, 1990 , , 403 .	2.0	19
251	Synthesis of Alkynylsilanes by Samarium-Mediated Alkylation of Ethynylsilanes. Synlett, 1994, 1994, 179-180.	1.8	19
252	Synthesis of 2â€Substituted 2â€Amino Ketones by Rhodiumâ€Catalyzed Reaction of <i>N</i> â€Sulfonylâ€1,2,3â€triazoles with 2â€Alkenols. Helvetica Chimica Acta, 2017, 100, e1600320.	1.6	19

#	Article	IF	Citations
253	A One-Pot Reaction of α-Imino Rhodium Carbenoids and Halohydrins: Access to 2,6-Substituted Dihydro-2H-1,4-oxazines. Organic Letters, 2020, 22, 3490-3494.	4.6	19
254	A FACILE SYNTHESIS OF \hat{I}^3 , \hat{I}^4 -UNSATURATED ESTERS BY THE Pd(II) CATALYZED CLAISEN REARRANGEMENT. Chemistry Letters, 1984, 13, 1535-1536.	1.3	18
255	Controlled release of sphingosine-1-phosphate agonist with gelatin hydrogels for macrophage recruitment. Acta Biomaterialia, 2014, 10, 4723-4729.	8.3	18
256	Claisen rearrangement of allylic α-isocyano-estersâ€"regioselective allylation of α-isocyanoesters at the α-carbon. Tetrahedron Letters, 1988, 29, 5151-5154.	1.4	16
257	Synthesis of Unsymmetrical Dialkynyl Imines. Stepwise Coupling ofN-Phenyl Phenylthioimidoyl Chloride with Alkynyltin Compounds. Chemistry Letters, 1989, 18, 1261-1264.	1.3	16
258	Neue katalytische Dreikomponenten-Cycloadditionen zur Synthese achtgliedriger Carbocyclen. Angewandte Chemie, 2003, 115, 742-744.	2.0	16
259	Rhodiumâ€Catalyzed Cyclization Reaction of 1,6â€Enynes with Arylboronic Acids through βâ€Hydride Elimination/Hydrorhodation Sequence. Chemistry - an Asian Journal, 2008, 3, 1035-1040.	3.3	16
260	Synthesis of $\hat{l}\pm,\hat{l}^2,\hat{l}^3,\hat{l}$ -Unsaturated Imines from <i>N</i> -Sulfonyl-1,2,3-triazoles and Allenes through Rhodium-catalyzed Cyclopropanation and Thermal Rearrangement. Chemistry Letters, 2015, 44, 700-702.	1.3	16
261	Light/Copper Relay for Aerobic Fragmentation of Lignin Model Compounds. Asian Journal of Organic Chemistry, 2018, 7, 2431-2434.	2.7	16
262	A STEREOSELECTIVE SYNTHESIS OF 2-AMINO-2-DEOXY-D-RIBOSE. Chemistry Letters, 1982, 11, 1271-1274.	1.3	15
263	A new water-compatible dehydrating agent DPTF. Tetrahedron Letters, 1996, 37, 7541-7544.	1.4	15
264	Hydrosilylation-Metathesis Sequence Leading to 1-Silaindenes. Synlett, 2010, 2010, 2743-2746.	1.8	15
265	Construction of Indole Skeletons by Sequential Actions of Sunlight and Rhodium on α-Aminoacetophenones. Chemistry Letters, 2013, 42, 1076-1078.	1.3	15
266	Chiral Macrocycles Having <i>C</i> ₃ Symmetry Resulting from Orientation of Thiophene Rings. Angewandte Chemie - International Edition, 2020, 59, 20475-20479.	13.8	15
267	Dehydrative Allylation of α C(sp ³)–H Bonds of Alkylamines with Allylic Alcohols. Organic Letters, 2020, 22, 4467-4470.	4.6	15
268	Transition Metal-catalyzed Coupling of [1-(Arylimino)alkyl]zinc with Aromatic Iodide. Chemistry Letters, 1989, 18, 1603-1606.	1.3	14
269	Enantioselektive Polymerisation von 1,2â€Diisoâ€eyanarenen zu optisch aktiven Poly(chinoxalinâ€2,3â€diylen) mit helicaler Konformation. Angewandte Chemie, 1992, 104, 1508-1510.	2.0	14
270	Nickel-catalyzed $[2 + 2 + 2]$ Cycloaddition Reaction of Isocyanates with 1,3-Dienes. Chemistry Letters, 2013, 42, 550-552.	1.3	14

#	Article	lF	CITATIONS
271	A NEW METHOD FOR THE STEREOSELECTIVE SYNTHESIS OF \hat{l}^2 -XYLOFURANOSIDE. Chemistry Letters, 1983, 12, 1733-1736.	1.3	13
272	Novel skeletal rearrangement reaction of tetrasilanes with aryl isocyanides. Journal of the Chemical Society Chemical Communications, 1989, , 1494.	2.0	13
273	Torque control by metal-orbital interactions. Pure and Applied Chemistry, 2006, 78, 415-423.	1.9	13
274	Synthesis and Helical Structure of Oligo(quinoline-2,3-diyl)s. Chemistry Letters, 2007, 36, 1036-1037.	1.3	13
275	Synthesis of Stereodefined 3-Alkylideneoxindoles by Palladium-catalyzed Reactions of 2-(Alkynyl)aryl Isocyanates with Thiols and Alcohols. Chemistry Letters, 2009, 38, 1174-1175.	1.3	13
276	Substituent effect of group 14 elements on the ring-opening reaction of cyclobutene. Organic and Biomolecular Chemistry, 2010, 8, 4169.	2.8	13
277	Synthesis of AzaaromaticBorane Intramolecular Complexes by Palladiumâ€Catalyzed Reaction of Azaaromatic Halides with Alkynyl(triaryl)borates. Helvetica Chimica Acta, 2012, 95, 2474-2480.	1.6	13
278	Site- and Regio-selective Incorporation of Carbon Dioxide into the C(sp ²)–Si Bond of Benzosilacyclobutenes. Chemistry Letters, 2018, 47, 570-572.	1.3	13
279	Stereo―and Enantioselective Synthesis of Propionateâ€Derived Trisubstituted Alkene Motifs. Chemistry - A European Journal, 2021, 27, 3861-3868.	3.3	13
280	Carbon-carbon bond forming reactions via new organosamarium(III) intermediates. Journal of Organometallic Chemistry, 1994, 473, 93-99.	1.8	12
281	Regio- and Stereoselective Incorporation of a13CNuclide into D-ribo-PhytosphingosineviaSml2-Mediated C–C Formation with13C-Labeled Isocyanide. Chemistry Letters, 1996, 25, 185-186.	1.3	12
282	Synthetic Approach to Benzocyclobutenones Using Visible Light and a Phosphonate Auxiliary. Organic Letters, 2018, 20, 1224-1227.	4.6	12
283	Diastereo†and Enantioselective Synthesis of (E)â€Î â€Borylâ€Substituted anti â€Homoallylic Alcohols in Two Steps from Terminal Alkynes. Angewandte Chemie, 2019, 131, 14762-14766.	2.0	12
284	Preparation of Ni(cod) ₂ Using Light as the Source of Energy. Organometallics, 2019, 38, 1413-1416.	2.3	12
285	The first total synthesis of OPC-15161. Journal of Organic Chemistry, 1991, 56, 4864-4867.	3.2	11
286	Thermal Reaction of 4-($\langle i \rangle p \langle j \rangle$ -Aminophenyl)-1-sulfonyl-1,2,3-triazoles Furnishing Benzoyl Cyanides through $\langle i \rangle N \langle j \rangle$ -Sulfinyl Imine Intermediates. Chemistry Letters, 2015, 44, 967-969.	1.3	11
287	Synthesis of a Bis(silyl)iridium(III) ComplexviaOxidative Addition of an Si–Si Linkage to Ir(I) and Its Crystal Structure. Chemistry Letters, 1996, 25, 13-14.	1.3	10
288	A Direct Synthesis of Alkenyl Alkylidene Bicyclo [3.1.0] hexane Derivatives via Ruthenium (II)-Catalysed Bicyclisation of Allenynes. Synlett, 2008, 2008, 193-196.	1.8	10

#	Article	IF	CITATIONS
289	Regioselective Construction of Indene Skeletons by Palladiumâ€Catalyzed Annulation of Alkynylborates with <i>o</i> hi>â€lodophenyl Ketones. European Journal of Organic Chemistry, 2013, 2013, 1421-1424.	2.4	10
290	Azulenophenanthrenes from 2,2′â€Di(arylethynyl)biphenyls through CC Bond Cleavage of a Benzene Ring. Angewandte Chemie, 2013, 125, 6620-6623.	2.0	10
291	Asymmetric Synthesis of Cyclopropylmethanamines by Rhodium-catalyzed Cyclopropanation of Pinacol Allylboronate with <i>N</i> -Sulfonyl-1,2,3-triazoles. Chemistry Letters, 2016, 45, 1003-1005.	1.3	10
292	Photo-assisted Fixation of CO ₂ onto Aryl Bromides Producing Aromatic Esters. Chemistry Letters, 2019, 48, 1316-1318.	1.3	10
293	Visible-Light-Driven Dehydrogenative Coupling of Primary Alcohols with Phenols Forming Aryl Carboxylates. Organic Letters, 2021, 23, 7683-7687.	4.6	10
294	A NOVEL METHOD FOR THE GENERATION OF AN ESTER ENOLATE ANION FROM ETHOXYACETYLENE. Chemistry Letters, 1981, 10, 1129-1132.	1.3	9
295	A NOVEL ACID-RESISTANT ACETAL-TYPE PROTECTIVE GROUP FOR ALCOHOLS. Chemistry Letters, 1984, 13, 615-618.	1.3	9
296	A CONVENIENT METHOD FOR GENERATION OF TIN(II) THIOESTER ENOLATE AND ITS REACTION WITH ALDEHYDE. Chemistry Letters, 1986, 15, 213-216.	1.3	9
297	Metalation of Isocyanides. Synlett, 1990, 1990, 245-250.	1.8	9
298	Bemerkenswerter Einfluß von Silylsubstituenten auf den elektrocyclischen Ringschluß von Vinylallenen. Angewandte Chemie, 1995, 107, 1649-1650.	2.0	9
299	Preparation of (Alkaneimidoyl)lanthanides and Their Reactions with Carbonyl Compounds. Bulletin of the Chemical Society of Japan, 1996, 69, 25-30.	3.2	9
300	Synthesis of $(1 < i > H < /i >)$ -Isochromen-1-imines by Nickel-catalyzed Reaction of 2-lodobenzamides with Alkynes. Chemistry Letters, 2012, 41, 798-800.	1.3	9
301	Hydrogenolysis of 1-Alkoxybenzocyclobutenes with Site-selective Cleavage of the Sterically Hindered C(sp2)–C(sp3) Bond. Chemistry Letters, 2015, 44, 1521-1523.	1.3	9
302	Synthesis of Enantiopure <i>C</i> ₃ â€Symmetric Triangular Molecules. Angewandte Chemie, 2017, 129, 3382-3386.	2.0	9
303	Selective Functionalization of Aromatic C(sp ²)â^'H Bonds in the Presence of Benzylic C(sp ³)â^'H Bonds by Electronâ€Deficient Carbenoids Generated from 4â€Acylâ€1â€6ulfonylâ€1,2,3â€1riazoles. Angewandte Chemie, 2017, 129, 16872-16876.	2.0	9
304	Enantioselective Denitrogenative Annulation of 1 H â€Tetrazoles with Styrenes Catalyzed by Rhodium. Angewandte Chemie, 2018, 130, 5595-5598.	2.0	9
305	2â€Arylsilacyclobutane as a Latent Carbanion Reacting with CO ₂ . Angewandte Chemie, 2018, 130, 11569-11573.	2.0	9
306	Synthesis of γâ∈Borylâ∈Substituted Homoallylic Alcohols with anti Stereochemistry Based on a Doubleâ∈Bond Transposition. Angewandte Chemie, 2019, 131, 1150-1154.	2.0	9

#	Article	IF	CITATIONS
307	Light/Palladiumâ€Promoted Benzylic Câ^'H Acylation Using a Benzoyl Group as the Photoâ€Directing Group. Chemistry - an Asian Journal, 2019, 14, 403-406.	3.3	9
308	A Convenient Method for the Hydrolysis of Diethylthioacetals Catalyzed by Trityl Perchlorate. Chemistry Letters, 1986, 15, 1593-1596.	1.3	8
309	Trityl Salts Catalyzed Aldol-Type Reaction of Alkyl Enol Ethers with Acetals. Chemistry Letters, 1987, 16, 1051-1052.	1.3	8
310	The synthesis and reaction of N-phenyl alkynyl imine-hexacarbonyldicobalt complexes. Journal of Organometallic Chemistry, 1990, 385, 399-408.	1.8	8
311	Ein nicht verdrilltes Tetrakis(organosilyl)ethen. Angewandte Chemie, 1993, 105, 1542-1544.	2.0	8
312	Synthesis of Unsymmetrical α-Diketones via Autooxidation of α-Hydroxy Imines. Synlett, 1993, 1993, 511-512.	1.8	8
313	Intramolecular Bis-silylation Catalyzed by Palladium-Isocyanide Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1995, 53, 509-517.	0.1	8
314	A Silyl Substituent Dictates the Pathway of a Concerted Electrocyclic Ring-opening of Cyclobutene Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2002, 60, 1049-1054.	0.1	8
315	Photoassisted Cross-Coupling Reaction of \hat{l} ±-Chlorocarbonyl Compounds with Arylboronic Acids. Organic Letters, 2022, 24, 1616-1619.	4.6	8
316	Stereoselective Synthesis of 3-(1-Cyanoalkylidene)oxindoles by Palladium-catalyzed Cyclization Reaction of 2-(Alkynyl)aryl Isocyanates with Copper(I) Cyanide. Chemistry Letters, 2010, 39, 1132-1133.	1.3	7
317	A <i>syn</i> â€Selective Azaâ€Aldol Reaction of Boron Azaâ€Enolates Generated from <i>N</i> â€Sulfonylâ€1,2,3â€Triazoles and 9â€BBNâ€H. Angewandte Chemie, 2016, 128, 8874-8877.	2.0	7
318	C–H/C–F functionalization by E-selective ruthenium (II) catalysis. Journal of Catalysis, 2018, 364, 14-18.	6.2	7
319	Metallation reactions of isocyanides Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1991, 49, 184-194.	0.1	7
320	A NEW ALLYLATION REACTION OF THE COPPER(I) SALT OF ENAMINES WITH 2-ALLYLOXYBENZIMIDAZOLES. Chemistry Letters, 1979, 8, 957-960.	1.3	6
321	Alkyllithium-Mediated Anomalous Trimerization of 2,6-Xylyl Isocyanide. Chemistry Letters, 1996, 25, 7-8.	1.3	6
322	Reaction of 2-Alkynylbenzoyl Cyanides with Carboxylic Acids Producing Functionalized Indenones. Synlett, 2008, 2008, 1817-1820.	1.8	6
323	Reactions of Alkynylboron Compounds. Topics in Organometallic Chemistry, 2015, , 93-116.	0.7	6
324	Photoinduced Cyclization of (o â€Alkylbenzoyl)phosphonates to Benzocyclobutenols. Chemistry - an Asian Journal, 2017, 12, 1905-1908.	3.3	6

#	Article	IF	CITATIONS
325	A shortcut to molecular complexity. Nature Chemistry, 2017, 9, 298-299.	13.6	6
326	Palladiumâ€Catalyzed Dehydrogenative Coupling Reaction of Terminal Alkynes with Unactivated Alkenes. Journal of the Chinese Chemical Society, 2018, 65, 117-121.	1.4	6
327	A Strained Vicinal Diol as a Reductant for Coupling of Organyl Halides. Chemistry Letters, 2019, 48, 1042-1045.	1.3	6
328	Photoâ€Induced Dihydroxylation of Alkenes with Diacetyl, Oxygen, and Water. Helvetica Chimica Acta, 2021, 104, e2000228.	1.6	6
329	Photoinduced Carbamoylation of C(sp ³)â€"H Bonds with Isocyanates. Chemistry Letters, 2021, 50, 1684-1687.	1.3	6
330	Photodriven Dehydrogenative Homocoupling of Benzylic C–H Bonds Forming Strained C–C Bonds. Synlett, 2021, 32, 2067-2070.	1.8	6
331	Photoinduced Direct Addition of Alkylarenes to Imines. Chemistry Letters, 2021, 50, 1972-1974.	1.3	6
332	Photoinduced Reaction of Triarylphosphines with Alkenes Forming Fused Tricyclic Phosphonium Salts. Organic Letters, 2021, 23, 8445-8449.	4.6	6
333	A CONVENIENT METHOD FOR THE PREPARATION OF ENOL ACETATES OF $\hat{I}\pm$ -KETO ESTERS BY THE ALKYLATION OF CYANOHYDRIN SILYL ETHERS DERIVED FROM GLYOXYLIC ESTERS WITH BENZYL AND ALLYL HALIDES. Chemistry Letters, 1983, 12, 985-988.	1.3	5
334	The reaction of N-phenyldialkynylimines with $\hat{\textbf{l}}$ -5-cyclopentadienyldicarbonylcobalt. Journal of Organometallic Chemistry, 1989, 359, C57-C60.	1.8	5
335	Synthesis of Pyrroline via Cyclization of 4-lsocyano-1-siloxy-1-alkene Induced by an Iminium Salt. Heterocycles, 1998, 47, 85.	0.7	5
336	A Direct Entry to Bicyclic Cyclobutenes via Platinum-Catalyzed ÂCycloisomerization of Allenynes. Synlett, 2006, 2006, 0575-0578.	1.8	5
337	Rhodium-Catalyzed Arylative Cyclization Reaction of Diynes with Arylboronic Acids. Synlett, 2007, 2007, 2029-2032.	1.8	5
338	Synthesis of Silole Skeletons via Metathesis Reactions. Synlett, 2008, 2008, 561-564.	1.8	5
339	Synthesis of Tofisopam by Way of Photoinduced CO2Fixation. Chemistry - an Asian Journal, 2019, 14, 4189-4192.	3.3	5
340	Photoinduced Specific Acylation of Phenolic Hydroxy Groups with Aldehydes. Angewandte Chemie, 2020, 132, 18424-18428.	2.0	5
341	C1 Oxidation/C2 Reduction Isomerization of Unprotected Aldoses Induced by Light/Ketone. Angewandte Chemie, 2020, 132, 2777-2781.	2.0	5
342	Achievements of the Late Professor Teruaki Mukaiyama. Chemical Record, 2021, 21, 2-16.	5.8	5

#	Article	IF	CITATIONS
343	Photocatalytic Cycloaddition Reaction of Triarylphosphines with Alkynes Forming Cyclic Phosphonium Salts. Chemistry Letters, 2021, 50, 1691-1694.	1.3	5
344	Nickel-Catalyzed $\hat{1}\pm 1,3$ -Dienylation of 1,3-Dicarbonyl Compounds with Propargylic Carbonates. Synlett, 2021, 32, 1621-1624.	1.8	5
345	CESIUM FLUORIDE-PROMOTED REACTION OF ALDEHYDES WITHS-(2-BENZIMIDAZOLYL)ALKANETHIOATES A NEW METHOD FOR THE PREPARATION OF ENOL ESTERS. Chemistry Letters, 1980, 9, 529-532.	1.3	4
346	New Cycloaddition Reactions of Conjugated Allenes Catalyzed by Transition Metal Complexes Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1998, 56, 406-412.	0.1	4
347	Acid-Promoted sp ³ C–H Bond Cleavage in a Series of (2-Allylphenoxo)ruthenium(II) Complexes. Mechanistic Insight into the Aryloxo–Acid Interaction and Bond Cleavage Reaction. Organometallics, 2012, 31, 381-393.	2.3	4
348	Synthesis of Acylphosphonates by a Palladiumâ€Catalyzed Phosphonocarbonylation Reaction of Aryl Iodides with Phosphites. Chemistry - an Asian Journal, 2015, 10, 321-324.	3.3	4
349	Dehydrative Allylation of 2-Alkylbenzophenones with Allylic Alcohols. Chemistry Letters, 2020, 49, 616-618.	1.3	4
350	Regioselective 1,3-Dipolar Cycloaddition of Nitriles with Nitrile Imines Generated from Tetrazoles. Chemistry Letters, 2021, 50, 131-135.	1.3	4
351	Synthesis of Functionalized Isoindoles by the Rhodium-Catalyzed Reaction of Cyanoformates with ortho-Borylbenzalacetone Derivatives. Bulletin of the Korean Chemical Society, 2010, 31, 1461-1462.	1.9	4
352	Photoinduced Hydrophosphination of Terminal Alkynes with Tri(<i>o</i> -tolyl)phosphine: Synthesis of Alkenylphosphonium Salts. Organic Letters, 2022, 24, 2504-2508.	4.6	4
353	Challenge of Organic Synthesis-toward the 21st Century. Synthetic Transformation of C-H and C-C Bonds Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1997, 55, 444-451.	0.1	3
354	Rhodium-Catalyzed Addition-Cyclization Reactions of 5-Yn-1-ones with Arylboronic Acids. Synlett, 2005, 2005, 667-669.	1.8	3
355	Acceleration of Inward Ring Opening of 3â€Phosphorylcyclobutenes. Asian Journal of Organic Chemistry, 2017, 6, 174-176.	2.7	3
356	Synthesis of Alkyl Sulfones from Alkenes and Tosylmethylphosphonium Iodide through Photo-promoted C–C Bond Formation. Chemistry Letters, 2020, 49, 1382-1385.	1.3	3
357	Development of Catalytic Reactions Triggered by Addition of Arylrhodium(I) Species across Alkynes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 745-754.	0.1	3
358	Development of New Synthetic Methods Based upon Carbon-Carbon Bond Activation. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 29-38.	0.1	3
359	Rhodium-Catalyzed Annulation Reactions of 2-Cyanophenylboronic Acid with Alkynes and Strained Alkenes. Organic Letters, 2006, 8, 1961-1961.	4.6	2
360	Synthesis of Fused and Linked Benzofurans from 2-Alkynylphenol Derivatives through Rhodium(I)-catalyzed Domino-type Addition Reactions. Chimia, 2018, 72, 888.	0.6	2

#	Article	IF	CITATIONS
361	Cyclization Reaction of 4-Acyl-1-sulfonyl-1,2,3-triazoles Possessing Phenyl Rings through Generation of Electron-deficient Carbenoids. Chemistry Letters, 2019, 48, 510-512.	1.3	2
362	Photoinduced 1,2-Hydro(cyanomethylation) of Alkenes with a Cyanomethylphosphonium Ylide. Synlett, 2019, 30, 511-514.	1.8	2
363	Degradation of Unprotected Aldohexonic Acids to Aldopentoses Promoted by Light and Oxygen. Chemistry Letters, 2020, 49, 1309-1311.	1.3	2
364	ä½ç½®ç•°æ€§ä½"ï¼^Regioisomer)?. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemi	stry@ 20 15,	732,315-315.
365	1,2-Acyl migration with $\hat{l}\pm$ -imino rhodium carbenoids leading to substituted 1-naphthols. Chemical Communications, 2022, , .	4.1	2
366	Generation of Boron Aza-Enolates by a Nickel-catalyzed Reaction of Triazoles with Pinacolborane and Their Addition to Aldehydes. Chemistry Letters, 2019, 48, 965-967.	1.3	1
367	Chiral Macrocycles Having <i>C</i> ₃ Symmetry Resulting from Orientation of Thiophene Rings. Angewandte Chemie, 2020, 132, 20655-20659.	2.0	1
368	Photoinduced Dearomatizing Threeâ€Component Coupling of Arylphosphines, Alkenes, and Water. Angewandte Chemie, 2021, 133, 3593-3597.	2.0	1
369	Isomerization of Unprotected Aldoses to 2-Deoxyaldonic Acids Induced by Visible Light/Quinuclidine/Water-Soluble Iridium Complex in Water. Bulletin of the Chemical Society of Japan, 2021, 94, 1702-1704.	3.2	1
370	Dehydrative/Decarboxylative Coupling of Carboxylic Acids with Allylic Alcohols. Chemistry Letters, 2021, 50, 1030-1033.	1.3	1
371	New Synthetic Access to 1,3-Diaza-5-sila-2-boracyclohexane Frameworks by the Reaction of Borane with Bis[(N-arylimino)organosilylmethyl]silanes. Heterocycles, 1997, 44, 121.	0.7	1
372	Synthesis, Structure, and Dynamics of Chiral Eightâ€Membered Cyclic Molecules with Thienylene and Cyclopropylene Units Alternately Connected. Chemistry - A European Journal, 2021, , .	3.3	1
373	Thermal Metathesis of C–C Single Bonds Induced by Steric Frustration. Chemistry Letters, 2022, 51, 771-774.	1.3	1
374	A Silyl Substituent Dictates the Pathway of a Concerted Electrocyclic Ring-Opening of Cyclobutene. ChemInform, 2003, 34, no.	0.0	0
375	New Catalyzed Three-Component Cycloadditions for the Synthesis of Eight-Membered Carbocycles. ChemInform, 2003, 34, no.	0.0	0
376	Palladium- and Nickel-Catalyzed Intramolecular Cyanoboration of Alkynes ChemInform, 2003, 34, no.	0.0	0
377	Enantioface-Selective Palladium-Catalyzed Silaboration of Allenes via Double Asymmetric Induction ChemInform, 2004, 35, no.	0.0	0
378	A New Look at Boron Enolate Chemistry: Aminative Câ€"C Bond Formation Using Diaminoboron Enolate with Aldehyde ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
379	Rhodium-Catalyzed Addition/Ring-Opening Reaction of Arylboronic Acids with Cyclobutanones ChemInform, 2004, 35, no.	0.0	O
380	Synthesis of Tertiary Propargylamines by Sequential Reactions of in situ Generated Thioiminium Salts with Organolithium and -magnesium Reagents ChemInform, 2004, 35, no.	0.0	0
381	Stereoselective Synthesis of (Z)-1-Silyl-2-stannylethene by Palladium-Catalyzed Silastannation of Ethyne and Its Synthetic Transformations ChemInform, 2004, 35, no.	0.0	O
382	Eight-Membered Ring Formation via Olefin Insertion into a Carbon—Carbon Single Bond ChemInform, 2004, 35, no.	0.0	0
383	Aminoboranes as ?Compatible? Iminium Ion Generators in Aminative C?C Bond Formations ChemInform, 2005, 36, no.	0.0	0
384	Rhodium-Catalyzed Cyclization of 1,6-Enynes Triggered by Addition of Arylboronic Acids ChemInform, 2005, 36, no.	0.0	0
385	Synthesis and Reactions of Cyclic Silylboranes ChemInform, 2005, 36, no.	0.0	0
386	Ketone Synthesis by Intramolecular Acylation or Organorhodium(I) with Ester ChemInform, 2005, 36, no.	0.0	0
387	Palladium-Catalyzed Addition of Cyanoboranes to Alkynes: Regio- and Stereoselective Synthesis of $\hat{l}\pm,\hat{l}^2$ -Unsaturated \hat{l}^2 -Boryl Nitriles ChemInform, 2005, 36, no.	0.0	0
388	Nickel-Catalyzed Intermolecular Alkyne Insertion into Cyclobutanones ChemInform, 2005, 36, no.	0.0	0
389	Acids Direct 2-Styrylcyclobutanone into Two Distinctly Different Reaction Pathways ChemInform, 2005, 36, no.	0.0	0
390	Intramolecular Nucleophilic Addition of an Organorhodium(I) to a Nitrile ChemInform, 2005, 36, no.	0.0	0
391	Synthesis of Seven-Membered-Ring Ketones by Arylative Ring Expansion of Alkyne-Substituted Cyclobutanones ChemInform, 2005, 36, no.	0.0	0
392	Rhodium-Catalyzed Annulation Reactions of 2-Cyanophenylboronic Acid with Alkynes and Strained Alkenes ChemInform, 2005, 36, no.	0.0	0
393	Addition/Ring-Opening Reaction of Organoboronic Acids to Cyclobutanones Catalyzed by Rhodium(I)/P(t-Bu)3 Complex ChemInform, 2005, 36, no.	0.0	0
394	Asymmetric Carroll Rearrangement of Allyl \hat{l} ±-Acetamido- \hat{l} 2-ketocarboxylates Catalyzed by a Chiral Palladium Complex ChemInform, 2005, 36, no.	0.0	0
395	Molybdenum-Catalyzed Ring-Closing Metathesis of Allenynes ChemInform, 2005, 36, no.	0.0	0
396	Special Issue Celebrating 40 Years of the Mukaiyama Aldol Reaction: Introductory Remarks. Chemical Record, 2014, 14, 12-13.	5.8	0

#	Article	IF	CITATIONS
397	Cluster Preface: C–C Activation. Synlett, 2018, 29, 716-716.	1.8	О
398	Synthesis of Elongated Esters from Alkenes. Angewandte Chemie, 2018, 130, 15681-15685.	2.0	0
399	Achievements of the Late Professor Teruaki Mukaiyama. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 59-69.	0.1	O
400	How to explain an S _N 2 reaction?. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 1073-1076.	0.1	0
401	Synthesis of Tetraarylphosphonium Salts from Triarylphosphines and Aryl Bromides Exploiting Light and Palladium. Chemistry Letters, 2022, 51, 522-524.	1.3	0
402	Dehydrogenative Three-component Coupling of CO with Methylarenes Forming Dibenzyl Ketones. Chemistry Letters, 2022, 51, 765-767.	1.3	0