James M Wilczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7139380/publications.pdf Version: 2024-02-01

		471371	477173
29	1,168	17	29
papers	citations	h-index	g-index
31	31	31	1349
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Kalman-filter bias correction method applied to deterministic, ensemble averaged and probabilistic forecasts of surface ozone. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 238.	0.8	48
2	Investigating the Impacts of Daytime Boundary Layer Clouds on Surface Energy Fluxes and Boundary Layer Structure During CHEESEHEAD19. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
3	Evaluating convective planetary boundary layer height estimations resolved by both active and passive remote sensing instruments during the CHEESEHEAD19 field campaign. Atmospheric Measurement Techniques, 2022, 15, 2479-2502.	1.2	9
4	Connecting Land–Atmosphere Interactions to Surface Heterogeneity in CHEESEHEAD19. Bulletin of the American Meteorological Society, 2021, 102, E421-E445.	1.7	40
5	Mountain waves can impact wind power generation. Wind Energy Science, 2021, 6, 45-60.	1.2	14
6	On the surface energy balance closure at different temporal scales. Agricultural and Forest Meteorology, 2020, 281, 107823.	1.9	19
7	Evaluating the WFIP2 updates to the HRRR model using scanning Doppler lidar measurements in the complex terrain of the Columbia River Basin. Journal of Renewable and Sustainable Energy, 2020, 12, .	0.8	8
8	Data assimilation impact of in situ and remote sensing meteorological observations on wind power forecasts during the first W ind F orecast I mprovement P roject (WFIP). Wind Energy, 2019, 22, 932-944.	1.9	13
9	Identification and Characterization of Persistent Cold Pool Events from Temperature and Wind Profilers in the Columbia River Basin. Journal of Applied Meteorology and Climatology, 2019, 58, 2533-2551.	0.6	23
10	Measuring the impact of additional instrumentation on the skill of numerical weather prediction models at forecasting wind ramp events during the first Wind Forecast Improvement Project (WFIP). Wind Energy, 2019, 22, 1165-1174.	1.9	9
11	The Second Wind Forecast Improvement Project (WFIP2): Observational Field Campaign. Bulletin of the American Meteorological Society, 2019, 100, 1701-1723.	1.7	55
12	The Second Wind Forecast Improvement Project (WFIP2): General Overview. Bulletin of the American Meteorological Society, 2019, 100, 1687-1699.	1.7	45
13	Impact of model improvements on 80 m wind speeds during the second Wind Forecast Improvement Project (WFIP2). Geoscientific Model Development, 2019, 12, 4803-4821.	1.3	18
14	Evaluating and Improving NWP Forecast Models for the Future: How the Needs of Offshore Wind Energy Can Point the Way. Bulletin of the American Meteorological Society, 2018, 99, 1155-1176.	1.7	19
15	Improving NOAA NAQFC PM2.5 Predictions with a Bias Correction Approach. Weather and Forecasting, 2017, 32, 407-421.	0.5	45
16	Assessment of NWP Forecast Models in Simulating Offshore Winds through the Lower Boundary Layer by Measurements from a Ship-Based Scanning Doppler Lidar. Monthly Weather Review, 2017, 145, 4277-4301.	0.5	20
17	The POWER Experiment: Impact of Assimilation of a Network of Coastal Wind Profiling Radars on Simulating Offshore Winds in and above the Wind Turbine Layer. Weather and Forecasting, 2016, 31, 1071-1091.	0.5	14
18	A Wind Energy Ramp Tool and Metric for Measuring the Skill of Numerical Weather Prediction Models. Weather and Forecasting, 2016, 31, 1137-1156.	0.5	31

JAMES M WILCZAK

#	Article	IF	CITATIONS
19	The Wind Forecast Improvement Project (WFIP): A Public–Private Partnership Addressing Wind Energy Forecast Needs. Bulletin of the American Meteorological Society, 2015, 96, 1699-1718.	1.7	85
20	PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmospheric Environment, 2015, 108, 76-87.	1.9	97
21	PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmospheric Environment, 2015, 119, 431-442.	1.9	17
22	Use of Remote Sensors in Air Quality Monitoring and Prediction. , 2011, , 209-240.		0
23	Analysis of regional meteorology and surface ozone during the TexAQS II field program and an evaluation of the NMMâ€CMAQ and WRFâ€Chem air quality models. Journal of Geophysical Research, 2009, 114, .	3.3	28
24	An evaluation of realâ€ŧime air quality forecasts and their urban emissions over eastern Texas during the summer of 2006 Second Texas Air Quality Study field study. Journal of Geophysical Research, 2009, 114, .	3.3	69
25	Convective Boundary Layer Depth Estimation from Wind Profilers: Statistical Comparison between an Automated Algorithm and Expert Estimations. Journal of Atmospheric and Oceanic Technology, 2008, 25, 1397-1413.	0.5	46
26	Evaluation of several PM2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field study. Journal of Geophysical Research, 2007, 112, .	3.3	166
27	Upper-ocean thermal structure and heat content off the US West Coast during the 1997–1998 El Niño event based on AXBT and satellite altimetry data. Progress in Oceanography, 2007, 74, 48-70.	1.5	1
28	Bias-corrected ensemble and probabilistic forecasts of surface ozone over eastern North America during the summer of 2004. Journal of Geophysical Research, 2006, 111, .	3.3	45
29	Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004. Journal of Geophysical Research. 2005. 110	3.3	175