Peter J Holliman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7139000/publications.pdf

Version: 2024-02-01

567281 526287 40 757 15 27 citations h-index g-index papers 40 40 40 1312 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Perovskite processing for photovoltaics: a spectro-thermal evaluation. Journal of Materials Chemistry A, 2014, 2, 19338-19346.	10.3	99
2	Ultra-fast dye sensitisation and co-sensitisation for dye sensitized solar cells. Chemical Communications, 2010, 46, 7256.	4.1	91
3	Ultra-fast co-sensitization and tri-sensitization of dye-sensitized solar cells with N719, SQ1 and triarylamine dyes. Journal of Materials Chemistry, 2012, 22, 13318.	6.7	79
4	Low cost triazatruxene hole transporting material for >20% efficiency perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 5235-5243.	5 . 5	50
5	A study of dye anchoring points in half-squarylium dyes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 4055-4066.	10.3	40
6	Rapid, continuous in situ monitoring of dye sensitisation in dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 4321.	6.7	37
7	Development of selective, ultra-fast multiple co-sensitization to control dye loading in dye-sensitized solar cells. RSC Advances, 2014, 4, 2515-2522.	3.6	35
8	Efficient synthesis of ordered organo-layered double hydroxides. Green Chemistry, 2010, 12, 688.	9.0	31
9	Studies of Dye Sensitisation Kinetics and Sorption Isotherms of Direct Red 23 on Titania. International Journal of Photoenergy, 2008, 2008, 1-7.	2.5	29
10	The production of nanoparticulate ceria using reverse micelle sol gel techniques. Journal of Materials Chemistry, 2009, 19, 3517.	6.7	29
11	Ozone for SARS-CoV-2 inactivation on surfaces and in liquid cell culture media. Journal of Hazardous Materials, 2022, 428, 128251.	12.4	24
12	Multiple linker half-squarylium dyes for dye-sensitized solar cells; are two linkers better than one?. Journal of Materials Chemistry A, 2015, 3, 2883-2894.	10.3	22
13	Solvent issues during processing and device lifetime for perovskite solar cells. Materials Research Innovations, 2015, 19, 508-511.	2.3	19
14	A novel dimethylformamide (DMF) free bar-cast method to deposit organolead perovskite thin films with improved stability. Chemical Communications, 2016, 52, 4301-4304.	4.1	19
15	Influence of habitat on the quantity and composition of leachable carbon in the O2 horizon: Potential implications for potable water treatment. Lake and Reservoir Management, 2012, 28, 282-292.	1.3	16
16	Low temperature sintering of binder-containing TiO ₂ /metal peroxide pastes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 11134-11143.	10.3	16
17	Tracing dissolved organic carbon and trihalomethane formation potential between source water and finished drinking water at a lowland and an upland UK catchment. Science of the Total Environment, 2015, 537, 203-212.	8.0	16
18	Improving the light harvesting and colour range of methyl ammonium lead tri-bromide (MAPbBr ₃) perovskite solar cells through co-sensitisation with organic dyes. Chemical Communications, 2019, 55, 35-38.	4.1	16

#	Article	IF	CITATIONS
19	Low temperature sintering of aqueous TiO2 colloids for flexible, co-sensitized dye-sensitized solar cells. Materials Letters, 2019, 236, 289-291.	2.6	11
20	Facile self-assembly and stabilization of metal oxide nanoparticles. Journal of Colloid and Interface Science, 2015, 442, 110-119.	9.4	9
21	Study of the tribological properties and ageing of alkyphosphonic acid films on galvanized steel. Tribology International, 2018, 119, 337-344.	5.9	9
22	In situ monitoring and optimization of room temperature ultra-fast sensitization for dye-sensitized solar cells. Chemical Communications, 2014, 50, 12512-12514.	4.1	8
23	Studies of inherent lubricity coatings for low surface roughness galvanised steel for automotive applications. Lubrication Science, 2017, 29, 317-333.	2.1	8
24	Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells. Energies, 2020, 13, 4637.	3.1	8
25	Digital imaging to simultaneously study device lifetimes of multiple dye-sensitized solar cells. Sustainable Energy and Fuels, 2017, 1, 362-370.	4.9	7
26	Dissolved organic carbon and trihalomethane formation potential removal during coagulation of a typical UK upland water with alum, PAX-18 and PIX-322. Journal of Water Supply: Research and Technology - AQUA, 2014, 63, 650-660.	1.4	5
27	Metal Oxide Oxidation Catalysts as Scaffolds for Perovskite Solar Cells. Materials, 2020, 13, 949.	2.9	5
28	Novel benzothiazole half-squaraines: model chromophores to study dye–TiO ₂ interactions in dye-sensitized solar cells. Journal of Materials Chemistry A, 2020, 8, 22191-22205.	10.3	4
29	Hybrid Al2O3-CH3NH3Pbl3 Perovskites towards Avoiding Toxic Solvents. Materials, 2020, 13, 243.	2.9	4
30	A perspective on using experiment and theory to identify design principles in dye-sensitized solar cells. Science and Technology of Advanced Materials, 2018, 19, 599-612.	6.1	3
31	Treatments of wood ash amended biochar to reduce nutrient leaching and immobilise lead, copper, zinc and cadmium in aqueous solution: column experiments. Environmental Science: Water Research and Technology, 2022, 8, 1277-1286.	2.4	3
32	Surface interactions of half-squaraine dyes in dye-sensitized solar cells. Materials Research Innovations, 2015, 19, 494-496.	2.3	2
33	Desorption of carboxylates and phosphonates from galvanized steel: Towards greener lubricants. Surface and Interface Analysis, 2019, 51, 934-942.	1.8	2
34	Synthesis of SOT-OH and its application as a building block for the synthesis of new dimeric and trimeric Spiro-OMeTAD materials. Molecular Systems Design and Engineering, 2022, 7, 899-905.	3.4	1
35	Study of optical losses in mechanically stacked dye-sensitized/CdTe tandem solar cells. Materials Research Society Symposia Proceedings, 2013, 1538, 221-226.	0.1	0
36	Spectral response mapping of co-sensitized dye-sensitized solar cells dyed processed using rapid adsorption/desorption. Materials Letters: X, 2019, 3, 100015.	0.7	0

#	Article	IF	CITATIONS
37	Rapid, 5†min, low temperature aqueous platinization for plastic substrates for dye-sensitized solar cells. Materials Letters: X, 2019, 1, 100001.	0.7	O
38	Surface Engineering Dye-sensitized Solar Cells. , 0, , .		0
39	Linking theory and experiment to surface engineer environmentally sustainable solar cells. , 0, , .		O
40	Synthesis of SOT-OH as a building block for the synthesis of new dimeric and trimeric Spiro-OMeTAD Materials. , 0 , , .		0