
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7138958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superparamagnetic behaviour of metallic Co nanoparticles according to variable temperature magnetic resonance. Physical Chemistry Chemical Physics, 2021, 23, 2723-2730.	1.3	10
2	Co/multi-walled carbon nanotubes/polyethylene composites for microwave absorption: Tuning the effectiveness of electromagnetic shielding by varying the components ratio. Composites Science and Technology, 2021, 207, 108731.	3.8	27
3	Synthesis and Composition Study of Electrochemically Deposited Ni-P Coating with Increased Surface Area. Coatings, 2021, 11, 1071.	1.2	3
4	Investigation of vanadia–alumina catalysts with solid-state NMR spectroscopy and DFT. Physical Chemistry Chemical Physics, 2021, 23, 19352-19363.	1.3	1
5	Condensation of ammonium niobium oxalate studied by NMR crystallography and X-ray powder diffraction. Catalysis Today, 2020, 354, 26-35.	2.2	4
6	Effect of carbon coating on the thermal stability of nanocrystalline χ-Al2O3. Materials Chemistry and Physics, 2020, 240, 122135.	2.0	6
7	Impact of Incorporation of Active Nanoporous Components or Their Precursors in a CuAlO/CuAl Ceramometal Skeleton on the Properties in the Low-Temperature Water-Gas Shift Reaction. ACS Omega, 2020, 5, 19928-19937.	1.6	2
8	Crystal structure and migration paths of alkaline ions in NaVPO ₄ F. Physical Chemistry Chemical Physics, 2020, 22, 15876-15884.	1.3	7
9	1H and 93Nb Solid-State NMR and IR Study of Acidity of Nanodisperse Nb2O5•nH2O. Applied Magnetic Resonance, 2019, 50, 589-597.	0.6	4
10	Evolution of bulk and surface structures in stoichiometric LaAlO3 mixed oxide prepared by using starch as template. Materials Chemistry and Physics, 2018, 207, 423-434.	2.0	9
11	Stabilizing effect of the carbon shell on phase transformation of the nanocrystalline alumina particles. Ceramics International, 2018, 44, 4801-4806.	2.3	19
12	Internal field 59Co NMR study of cobalt-iron nanoparticles during the activation of CoFe2/CaO catalyst for carbon nanotube synthesis. Journal of Catalysis, 2018, 358, 62-70.	3.1	31
13	Support Effect on the Performance of Ni2P Catalysts in the Hydrodeoxygenation of Methyl Palmitate. Catalysts, 2018, 8, 515.	1.6	24
14	Pyrolysis of the Cellulose Fraction of Biomass in the Presence of Solid Acid Catalysts: An Operando Spectroscopy and Theoretical Investigation. ChemSusChem, 2018, 11, 4044-4059.	3.6	7
15	Co metal nanoparticles deposition inside or outside multi-walled carbon nanotubes via facile support pretreatment. Applied Surface Science, 2018, 456, 657-665.	3.1	29
16	Solid-state NMR and computational insights into the crystal structure of silicocarnotite-based bioceramic materials synthesized mechanochemically. Solid State Nuclear Magnetic Resonance, 2017, 84, 151-157.	1.5	7
17	Magnetic and dielectric properties of carbon nanotubes with embedded cobalt nanoparticles. Carbon, 2017, 114, 39-49.	5.4	45
18	The impact of Si/Al ratio on properties of aluminosilicate aerogels. Microporous and Mesoporous Materials, 2017, 251, 105-113.	2.2	33

#	Article	IF	CITATIONS
19	Structure of Carbon-Coated C12A7 Electride via Solid-State NMR and DFT Calculations. Journal of Physical Chemistry C, 2017, 121, 22268-22273.	1.5	9
20	Modern ssNMR for heterogeneous catalysis. Catalysis Today, 2017, 285, 179-193.	2.2	17
21	Surface Hydroxyl OH Defects of ÎAl ₂ O ₃ and χ-Al ₂ O ₃ by Solid State NMR, XRD, and DFT Calculations. Zeitschrift Fur Physikalische Chemie, 2017, 231, 809-825.	1.4	13
22	HDO of Methyl Palmitate over Silica-Supported Ni Phosphides: Insight into Ni/P Effect. Catalysts, 2017, 7, 298.	1.6	26
23	Structure of Ðj@Al2O by multinuclear solid-state NMR spectroscopy. Journal of Structural Chemistry, 2016, 57, 354-360.	0.3	5
24	Ceramic matrix composites prepared from CoAl powders. Journal of Materials Science, 2016, 51, 10487-10498.	1.7	5
25	Random Distribution of EFG Parameters in 27Al MAS NMR Spectra of AlO x /SiO2 Catalysts and Related Systems. Applied Magnetic Resonance, 2016, 47, 1193-1205.	0.6	2
26	First principles calculation of the stacking fault in (111) low-temperature metastable alumina. Journal of Structural Chemistry, 2016, 57, 294-300.	0.3	3
27	Effect of precursor on the catalytic properties of Ni ₂ P/SiO ₂ in methyl palmitate hydrodeoxygenation. RSC Advances, 2016, 6, 30372-30383.	1.7	23
28	Phase evolution during early stages of mechanical alloying of Cu–13 wt.% Al powder mixtures in a high-energy ball mill. Journal of Alloys and Compounds, 2015, 629, 343-350.	2.8	32
29	Effect of Impregnation on the Structure of Niobium Oxide/Alumina Catalysts Studied by Multinuclear Solid-State NMR, FTIR, and Quantum Chemical Calculations. Journal of Physical Chemistry C, 2015, 119, 10400-10411.	1.5	10
30	Thermal stability and hcp–fcc allotropic transformation in supported Co metal catalysts probed near operando by ferromagnetic NMR. Physical Chemistry Chemical Physics, 2015, 17, 14598-14604.	1.3	39
31	Mechanochemical Synthesis of SiO ₄ ^{4–} ‣ubstituted Hydroxyapatite, Part II – Reaction Mechanism, Structure, and Substitution Limit. European Journal of Inorganic Chemistry, 2014, 2014, 4810-4825.	1.0	40
32	A New Insight into Cobalt Metal Powder Internal Field 59Co NMR Spectra. Applied Magnetic Resonance, 2014, 45, 1009-1017.	0.6	15
33	EFfect of alumina modification on the structure of cobalt-containing Fischer-Tropsch synthesis catalysts according to internal-field 59Co NMR data. Journal of Structural Chemistry, 2013, 54, 102-110.	0.3	13
34	The structure of zirconium-silicate fiberglasses and Pt-containing fiberglass catalysts as revealed by solid-state NMR spectroscopy. Journal of Structural Chemistry, 2013, 54, 152-167.	0.3	5
35	Theoretical and experimental insights into applicability of solid-state 93Nb NMR in catalysis. Physical Chemistry Chemical Physics, 2013, 15, 5115.	1.3	48
36	Mechanochemical synthesis of γ-LiAlO2 studied by 6Li and 27Al NMR and synchrotron X-Ray diffraction. Inorganic Materials, 2011, 47, 763-767.	0.2	7

#	Article	IF	CITATIONS
37	Multinuclear NMR study of silica fiberglass modified with zirconia. Solid State Nuclear Magnetic Resonance, 2011, 39, 47-57.	1.5	20
38	Modern solid-state NMR of quadrupolar nuclei. Journal of Structural Chemistry, 2010, 51, 28-46.	0.3	2
39	Structure and Transport Properties of Doped Apatite-type Lanthanum Silicates Prepared via Mechanochemical Route. ECS Transactions, 2009, 25, 1791-1800.	0.3	5
40	Potential of 129Xe NMR spectroscopy of adsorbed xenon for testing the chemical state of the surface of mesoporous carbon materials illustrated by the example of aggregates of diamond and onion-like carbon nanoparticles. Kinetics and Catalysis, 2009, 50, 26-30.	0.3	6
41	Solid-state 51V NMR and its potentiality in investigation of vanadia systems with paramagnetic centres. Catalysis Today, 2009, 142, 220-226.	2.2	7
42	Precursor Effect on the Molecular Structure, Reactivity, and Stability of Alumina-Supported Vanadia. Journal of Physical Chemistry C, 2009, 113, 20648-20656.	1.5	16
43	Alâ€Doped Apatiteâ€Type Nanocrystalline Lanthanum Silicates Prepared by Mechanochemical Synthesis: Phase, Structural and Microstructural Study. European Journal of Inorganic Chemistry, 2008, 2008, 939-947.	1.0	19
44	129Xe NMR spectroscopy of adsorbed xenon: Possibilites for exploration of microporous carbon materials. Russian Journal of General Chemistry, 2008, 78, 2171-2181.	0.3	6
45	Radiation-chemical synthesis of phosphorus- and sulfur-containing polymers. Theoretical Foundations of Chemical Engineering, 2008, 42, 657-661.	0.2	0
46	Structural and reactive relevance of V+NbV+Nb coverage on alumina of VNbO/Al2O3 catalytic systems. Journal of Catalysis, 2008, 255, 94-103.	3.1	16
47	Is 129Xe NMR a useful technique for probing the pore structure and surface properties of carbonaceous solids?. Microporous and Mesoporous Materials, 2007, 105, 118-123.	2.2	10
48	129Xe NMR study of the localization of PdCl2 supported on carbon nanotubes. Reaction Kinetics and Catalysis Letters, 2007, 90, 355-364.	0.6	5
49	129Xe Nuclear Magnetic Resonance Study of Pitch-Based Activated Carbon Modified by Air Oxidation/Pyrolysis Cycles:  A New Approach to Probe the Micropore Size. Journal of Physical Chemistry B, 2006, 110, 3055-3060.	1.2	16
50	Ammoxidation of ethane on V-Mo-Nb oxide catalysts <span lang="EN-US<br">style='font-size:10.0pt;mso-ansi-language:EN-US'>. Reaction Kinetics and Catalysis Letters, 2006, 87, 377-386.	0.6	17
51	Synthesis Of Alumina Through Hydrothermal Oxidation Of Aluminum Powder Conjugated With Surfactant-Directed Oriented Growth. Materials Research Innovations, 2005, 9, 69-71.	1.0	4
52	129Xe NMR investigation of catalytic filamentous carbon. Microporous and Mesoporous Materials, 2005, 81, 41-48.	2.2	24
53	129Xe NMR study of Xe adsorption on multiwall carbon nanotubes. Solid State Nuclear Magnetic Resonance, 2005, 28, 135-141.	1.5	29
54	93Nb NMR chemical shift scale for niobia systems. Solid State Nuclear Magnetic Resonance, 2005, 28, 204-224.	1.5	69

#	Article	IF	CITATIONS
55	Molecular design and characterization of catalysts for NO x selective reduction by hydrocarbons in the oxygen excess based upon ultramicroporous zirconia pillared clays. Topics in Catalysis, 2005, 32, 29-38.	1.3	18
56	95Mo Magic Angle Spinning NMR at High Field:Â Improved Measurements and Structural Analysis of the Quadrupole Interaction in Monomolybdates and Isopolymolybdates. Journal of Physical Chemistry B, 2005, 109, 14033-14042.	1.2	54
57	Methylpyrazine Ammoxidation over Binary Oxide Systems: V. Effect of Phosphorus Additives on the Physicochemical and Catalytic Properties of a Vanadium–Titanium Catalyst in Methylpyrazine Ammoxidation. Kinetics and Catalysis, 2004, 45, 104-113.	0.3	6
58	Theoretical and Experimental Studies of the Nature of the Catalytic Activity of VO x /TiO2 Systems. Kinetics and Catalysis, 2003, 44, 710-717.	0.3	11
59	Ammoxidation of methylpyrazine over vanadium-titanium catalysts modified by alkali additives. Reaction Kinetics and Catalysis Letters, 2003, 78, 355-363.	0.6	5
60	Thermal, Conductivity, NMR, and Raman Spectroscopic Measurements and Phase Diagram of the Cs2S2O7â^'CsHSO4 System. Journal of Physical Chemistry B, 2003, 107, 13823-13830.	1.2	10
61	1H and 29Si-MAS NMR characterization of silicate fiberglass supports. Physical Chemistry Chemical Physics, 2003, 5, 2686.	1.3	12
62	Structure of Glasses in the Na2SO4–P2O5–H2O System. Glass Physics and Chemistry, 2002, 28, 1-4.	0.2	11
63	Antimony Oxide-Modified Vanadia-Based CatalystsPhysical Characterization and Catalytic Properties. Journal of Physical Chemistry B, 2001, 105, 10772-10783.	1.2	49
64	51V NMR Study of VOCl3Immobilized on the SiO2and MgCl2Surface. Kinetics and Catalysis, 2001, 42, 553-560.	0.3	16
65	Catalysts Based on Fiberglass Supports: I. Physicochemical Properties of Silica Fiberglass Supports. Kinetics and Catalysis, 2001, 42, 693-702.	0.3	28
66	Title is missing!. Kinetics and Catalysis, 2001, 42, 828-836.	0.3	6
67	Title is missing!. Kinetics and Catalysis, 2001, 42, 857-866.	0.3	3
68	Mechanochemical Synthesis and Structure of New Phases in the Pb–V–O System. Inorganic Materials, 2001, 37, 264-270.	0.2	4
69	Effect of potassium doping on the structural and catalytic properties of V/Ti-oxide in selective toluene oxidation. Applied Catalysis A: General, 2000, 202, 243-250.	2.2	45
70	Ammoxidation of methylpyrazine over binary oxide systems: IV. A vanadia—titania system. Kinetics and Catalysis, 2000, 41, 670-678.	0.3	8
71	Formation of vanadia-titania oxide catalysts. Kinetics and Catalysis, 2000, 41, 572-583.	0.3	20
72	The Structure of the VOx Oxo complexes on the surface of the Al2O3 of various structural modifications. Kinetics and Catalysis, 2000, 41, 270-275.	0.3	1

#	Article	IF	CITATIONS
73	Sodium-modified V2O5–TiO2 catalysts: 23Na and 51V solid-state NMR study. Physical Chemistry Chemical Physics, 2000, 2, 2441-2448.	1.3	17
74	Effect of Milling of V2O5on the Local Environment of Vanadium as Studied by Solid-State51V NMR and Complementary Methods. Journal of Physical Chemistry B, 1999, 103, 3138-3144.	1.2	36
75	Characterization of V2O5â^'TiO2 Catalysts Prepared by Milling by ESR and Solid State 1H and 51V NMR. Journal of Physical Chemistry B, 1999, 103, 7599-7606.	1.2	51
76	Conductivity, NMR Measurements, and Phase Diagram of the K2S2O7â^V2O5System. Journal of Physical Chemistry B, 1998, 102, 24-28.	1.2	29
77	High-Temperature NMR Studies of the Glassâ ´`Crystal Transition in the Cs2S2O7â `V2O5System. Journal of Physical Chemistry B, 1997, 101, 9188-9194.	1.2	14
78	1H, 51V and 15N nuclear magnetic resonance studies of structure and properties of vanadia supported on. Solid State Nuclear Magnetic Resonance, 1995, 4, 369-379.	1.5	25
79	Obituary for Vyatcheslav M. Mastikhin. Applied Magnetic Resonance, 1995, 8, iii-iv.	0.6	0
80	Characterization of V2O5-AlPO4 catalysts by 51V and 1H magic-angle spinning solid-state nuclear magnetic resonance spectroscopy. Solid State Nuclear Magnetic Resonance, 1995, 4, 59-64.	1.5	7
81	Long-term stability of the V2O5/Al2O3 catalyst for the selective reduction of nitrogen oxides. Catalysis Letters, 1994, 28, 25-31.	1.4	3
82	Characterization of silica-supported vanadia-promoted rhodium catalysts by51V-NMR spectroscopy. Catalysis Letters, 1992, 13, 203-211.	1.4	23
83	Study of the V2O5-Al2O3 interaction during ultra-high intensity grinding. Catalysis Letters, 1992, 13, 261-266.	1.4	4
84	Active component of vanadium catalysts in oxidation of gases with low concentrations of SO2. Reaction Kinetics and Catalysis Letters, 1990, 42, 55-59.	0.6	0
85	Mechanism of sulphur dioxide oxidation over supported vanadium catalysts. Faraday Discussions of the Chemical Society, 1989, 87, 133.	2.2	43
86	17O and51V NMR studies of complex formation in K2S2O7·nV2O5 during catalytic oxidation of SO2. Reaction Kinetics and Catalysis Letters, 1984, 26, 431-436.	0.6	17
87	51V-NMR spectra of vanadates and oxosulfato-vanadates of alkali metals. Reaction Kinetics and Catalysis Letters, 1984, 24, 119-125.	0.6	37
88	51V-,29Si- and27Al-NMR studies of the interaction of active component of vanadium catalysts for SO2 oxidation with supports. Reaction Kinetics and Catalysis Letters, 1984, 24, 127-131.	0.6	14
89	Effect of type and content of alkaline promoters on the properties of vanadium catalysts for SO2 oxidation. Reaction Kinetics and Catalysis Letters, 1983, 22, 59-62.	0.6	5
90	NMR studies of ethylene adsorption on supported zirconium catalysts for polymerization of olefins. Reaction Kinetics and Catalysis Letters, 1982, 19, 175-179.	0.6	8

#	Article	IF	CITATIONS
91	Studies of vanadium catalysts for sulfur dioxide oxidation by51V-NMR. Reaction Kinetics and Catalysis Letters, 1981, 17, 109-113.	0.6	3
92	51V NMR studies of a system vanadium pentoxide-potassium pyrosulfate. Reaction Kinetics and Catalysis Letters, 1980, 14, 317-322.	0.6	4
93	51V NMR studies of systems V2O5-KHSO4 and V2O5â^'K2SO4. Reaction Kinetics and Catalysis Letters, 1980, 14, 323-327.	0.6	1
94	Chemical shifts of hydroxyl groups in oxide catalysts and dissociation of hydroxy protons in HY zeolite. Reaction Kinetics and Catalysis Letters, 1979, 11, 353-358.	0.6	3
95	Design of Al ₂ 0 ₃ /CoAlO/CoAl Porous Ceramometal for Multiple Applications as Catalytic Supports. Advanced Materials Research, 0, 702, 79-87.	0.3	7