David Lominadze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7138797/publications.pdf Version: 2024-02-01

ΠΑΥΙΟ Ι ΟΜΙΝΑΟΖΕ

#	Article	IF	CITATIONS
1	Fibrinogen, Fibrinogen-like 1 and Fibrinogen-like 2 Proteins, and Their Effects. Biomedicines, 2022, 10, 1712.	1.4	5
2	Effects of fibrinogen synthesis inhibition on vascular cognitive impairment during traumatic brain injury in mice. Brain Research, 2021, 1751, 147208.	1.1	7
3	Fibrinogen Interaction with Astrocyte ICAM-1 and PrPC Results in the Generation of ROS and Neuronal Death. International Journal of Molecular Sciences, 2021, 22, 2391.	1.8	10
4	Fibrinogen activates ll̂ºBα signaling in neurons via binding to its receptors, ICAMâ€4 and PrP ^C . FASEB Journal, 2021, 35, .	0.2	0
5	The Effects of Fibrinogen's Interactions with Its Neuronal Receptors, Intercellular Adhesion Molecule-1 and Cellular Prion Protein. Biomolecules, 2021, 11, 1381.	1.8	7
6	Fibrinogen and/or Fibrin as a Cause of Neuroinflammation. Online Journal of Neurology and Brain Disorders, 2021, 5, .	0.4	0
7	Fibrinogen and Neuroinflammation During Traumatic Brain Injury. Molecular Neurobiology, 2020, 57, 4692-4703.	1.9	24
8	Fibrinogen-cellular prion protein complex formation on astrocytes. Journal of Neurophysiology, 2020, 124, 536-543.	0.9	10
9	Vascular and nonâ€vascular contributors to memory reduction during traumatic brain injury. European Journal of Neuroscience, 2019, 50, 2860-2876.	1.2	9
10	Remodeling of Retinal Architecture in Diabetic Retinopathy: Disruption of Ocular Physiology and Visual Functions by Inflammatory Gene Products and Pyroptosis. Frontiers in Physiology, 2018, 9, 1268.	1.3	45
11	Hyperfibrinogenemia-mediated astrocyte activation. Brain Research, 2018, 1699, 158-165.	1.1	12
12	Role of Fibrinogen in Vascular Cognitive Impairment in Traumatic Brain Injury. , 2018, , .		2
13	High methionine, low folate and low vitamin B6/B12 (HM-LF-LV) diet causes neurodegeneration and subsequent short-term memory loss. Metabolic Brain Disease, 2018, 33, 1923-1934.	1.4	33
14	Localization of Fibrinogen in the Vasculo-Astrocyte Interface after Cortical Contusion Injury in Mice. Brain Sciences, 2017, 7, 77.	1.1	24
15	Cerebrovascular disorders caused by hyperfibrinogenaemia. Journal of Physiology, 2016, 594, 5941-5957.	1.3	17
16	Hyperhomocysteinemia inhibits satellite cell regenerative capacity through p38 alpha/beta MAPK signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H325-H334.	1.5	28
17	Ablation of matrix metalloproteinase-9 gene decreases cerebrovascular permeability and fibrinogen deposition post traumatic brain injury in mice. Metabolic Brain Disease, 2015, 30, 411-426.	1.4	61
18	Epigenetic Silencing of Netrin is associated with Memory Loss by High Methionine, Low Folate and Vitamin B 6 /B 12 containing diet. FASEB Journal, 2015, 29, 996.6.	0.2	1

#	Article	IF	CITATIONS
19	Increased Cerebrovascular Protein Transcytosis and Amyloidâ€Î² Deposition during Hyperfibrinogenemia Alter Shortâ€ŧerm Memory. FASEB Journal, 2015, 29, 673.1.	0.2	0
20	Ablation of <i>MMP9</i> Gene Ameliorates Paracellular Permeability and Fibrinogen–Amyloid Beta Complex Formation during Hyperhomocysteinemia. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1472-1482.	2.4	44
21	Sphingolipids affect fibrinogen-induced caveolar transcytosis and cerebrovascular permeability. American Journal of Physiology - Cell Physiology, 2014, 307, C169-C179.	2.1	19
22	Elevated Level of Fibrinogen Increases Caveolae Formation; Role of Matrix Metalloproteinase-9. Cell Biochemistry and Biophysics, 2014, 69, 283-294.	0.9	21
23	Role of fibrinogen in cerebrovascular dysfunction after traumatic brain injury. Brain Injury, 2013, 27, 1508-1515.	0.6	44
24	Role of Fibrinogen in Traumatic Brain Injury. FASEB Journal, 2013, 27, 1121.5.	0.2	0
25	Ablation of MMPâ€9 gene ameliorates paracellular permeability and fibrinogenâ€amyloid beta plaque formation during hyperhomocysteinemia. FASEB Journal, 2013, 27, 709.4.	0.2	0
26	Role of sphingolipids in fibrinogenâ€induced cerebrovascular permeability. FASEB Journal, 2013, 27, 1131.9.	0.2	0
27	3-amino-4-(3-hexylphenylamino)-4-oxobutyl phosphonic acid (W146), a Selective Antagonist of Sphingosine-1-phospahte Receptor Subtype 1, Enhances AMD3100-stimulated Mobilization of Hematopoietic Stem Progenitor Cells in Animals. Journal of Biochemical and Pharmacological Research, 2013, 1, 197-203.	1.7	4
28	Fibrinogen-Induced Increased Pial Venular Permeability in Mice. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 150-163.	2.4	33
29	A Dual-Tracer Method for Differentiating Transendothelial Transport from Paracellular Leakage in Vivo and in Vitro. Frontiers in Physiology, 2012, 3, 166.	1.3	36
30	Autophagy mechanism of right ventricular remodeling in murine model of pulmonary artery constriction. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H688-H696.	1.5	52
31	Homocysteine alters cerebral microvascular integrity and causes remodeling by antagonizing GABA-A receptor. Molecular and Cellular Biochemistry, 2012, 371, 89-96.	1.4	25
32	Hydrogen Sulfide Mitigates Cardiac Remodeling During Myocardial Infarction via Improvement of Angiogenesis. International Journal of Biological Sciences, 2012, 8, 430-441.	2.6	92
33	Matrix metalloproteinaseâ€9 in homocysteineâ€induced intestinal microvascular endothelial paracellular and transcellular permeability. Journal of Cellular Biochemistry, 2012, 113, 1159-1169.	1.2	28
34	Matrix Metalloproteinaseâ€9 in Homocysteineâ€Induced Intestinal Microvascular Endothelial Paracellular and Transcellular Permeability. FASEB Journal, 2012, 26, 862.4.	0.2	0
35	NFkB signaling and inducible nitric oxide synthase activity during pulmonary ischemiaâ€reperfusion increase coâ€localization of fibrinogen/fibrin and platelets at sites of vascular leakage in rabbit lung. FASEB Journal, 2012, 26, 1130.14.	0.2	0
36	Increased formation of functional caveolae due to increased content of fibrinogen. FASEB Journal, 2012, 26, 862.3.	0.2	0

#	Article	IF	CITATIONS
37	Fibrinogen alters mouse brain endothelial cell layer integrity affecting vascular endothelial cadherin. Biochemical and Biophysical Research Communications, 2011, 413, 509-514.	1.0	29
38	Folic acid improves acetylcholineâ€induced vasoconstriction of coronary vessels isolated from hyperhomocysteinemic mice: An implication to coronary vasospasm. Journal of Cellular Physiology, 2011, 226, 2712-2720.	2.0	28
39	Hydrogen sulfide improves angiogenesis and regulates cardiac function and structure during myocardial infarction in mice. FASEB Journal, 2011, 25, .	0.2	0
40	The siRNA targeting MMPâ€9 mitigates Homocysteine induced dysruption of barrier integrity in Human intestinal microvascular cells. FASEB Journal, 2011, 25, 1066.7.	0.2	0
41	Mechanisms of fibrinogenâ€induced microvascular dysfunction during cardiovascular disease. Acta Physiologica, 2010, 198, 1-13.	1.8	107
42	Folic acid mitigated cardiac dysfunction by normalizing the levels of tissue inhibitor of metalloproteinase and homocysteine-metabolizing enzymes postmyocardial infarction in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1484-H1493.	1.5	23
43	Folic Acid Mitigated Cardiac Dysfunction by Normalizing the Levels of Tissue Inhibitor of Metalloproteinase and homocysteineâ€metabolizing enzymes Post myocardial Infarction in Mice FASEB Journal, 2010, 24, 600.5.	0.2	0
44	Balance of S1P ₁ and S1P ₂ signaling regulates peripheral microvascular permeability in rat cremaster muscle vasculature. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H33-H42.	1.5	75
45	Fibrinogen-induced endothelin-1 production from endothelial cells. American Journal of Physiology - Cell Physiology, 2009, 296, C840-C847.	2.1	48
46	Nitrotyrosinylation, remodeling and endothelialâ€nyocyte uncoupling in iNOS, cystathionine beta synthase (CBS) knockouts and iNOS/CBS double knockout mice. Journal of Cellular Biochemistry, 2009, 106, 119-126.	1.2	26
47	Activation of GABAâ€A receptor ameliorates homocysteineâ€induced MMPâ€9 activation by ERK pathway. Journal of Cellular Physiology, 2009, 220, 257-266.	2.0	60
48	Fibrinogen induces alterations of endothelial cell tight junction proteins. Journal of Cellular Physiology, 2009, 221, 195-203.	2.0	66
49	Hypothermia and Surgery. Annals of Surgery, 2009, 250, 134-140.	2.1	81
50	An Elevated Fibrinogen Increases Matrix Metalloproteinases Activity in Cardiac Microvascular Endothelial Cells. FASEB Journal, 2009, 23, 592.10.	0.2	2
51	Inducible nitric oxide synthase inhibition attenuates lung injury and decreases NADPH oxidase expression and activation during ischemiaâ€reperfusion in the ventilated rabbit lung. FASEB Journal, 2009, 23, 620.2.	0.2	0
52	Activation of GABA¬A receptor Protects Mitochondria and Reduces Cerebral ischemia FASEB Journal, 2009, 23, 614.8.	0.2	2
53	GABAA receptor agonist mitigates homocysteine-induced cerebrovascular remodeling in knockout mice. Brain Research, 2008, 1221, 147-153.	1.1	25
54	Endothelial cell-derived nitric oxide mobilization is attenuated in copper-deficient rats. Applied Physiology, Nutrition and Metabolism, 2008, 33, 1073-1078.	0.9	5

#	Article	IF	CITATIONS
55	Homocysteine attenuates blood brain barrier function by inducing oxidative stress and the junctional proteins. FASEB Journal, 2008, 22, 734.7.	0.2	5
56	Mechanism of homocysteineâ€induced dementia/spasm. FASEB Journal, 2008, 22, 734.9.	0.2	0
57	Inhibition of inducible nitric oxide synthase attenuates platelet activation and fibrinogen/fibrin deposition in pulmonary microvessels caused by lung ischemiaâ€reperfusion in rabbits. FASEB Journal, 2008, 22, 1150.14.	0.2	0
58	Cardiac Dys-Synchronization and Arrhythmia in Hyperhomocysteinemia. Current Neurovascular Research, 2007, 4, 289-294.	0.4	11
59	γ-Aminbuturic Acid A Receptor Mitigates Homocysteine-Induced Endothelial Cell Permeability. Endothelium: Journal of Endothelial Cell Research, 2007, 14, 315-323.	1.7	28
60	Differential expression of γ-aminobutyric acid receptor A (GABAA) and effects of homocysteine. Clinical Chemistry and Laboratory Medicine, 2007, 45, 1777-84.	1.4	32
61	Lung ischemia–reperfusion injury: implications of oxidative stress and platelet–arteriolar wall interactions. Archives of Physiology and Biochemistry, 2007, 113, 1-12.	1.0	115
62	Fibrinogen induces endothelial cell permeability. Molecular and Cellular Biochemistry, 2007, 307, 13-22.	1.4	83
63	Differential Expression of the GABA _A receptor subunits in the Kidney and Cardiovascular system. FASEB Journal, 2007, 21, A497.	0.2	1
64	HOMOCYSTEINEâ€INDUCED ENDOTHELIAL CELL PERMEABILITY, ROLE OF γâ€AMINOBUTURIC ACID A (GABA A) RECEPTOR. FASEB Journal, 2007, 21, A489.	0.2	0
65	Activation of GABA A receptor ameliorate homocysteineâ€induced MMPâ€9 by ERK pathway. FASEB Journal, 2007, 21, A497.	0.2	0
66	GABA Receptors Ameliorate Hcy-Mediated Integrin Shedding and Constrictive Collagen Remodeling in Microvascular Endothelial Cells. Cell Biochemistry and Biophysics, 2006, 45, 157-166.	0.9	22
67	Mitochondrial mechanism of microvascular endothelial cells apoptosis in hyperhomocysteinemia. Journal of Cellular Biochemistry, 2006, 98, 1150-1162.	1.2	82
68	Arrhythmia and neuronal/endothelial myocyte uncoupling in hyperhomocysteinemia. Archives of Physiology and Biochemistry, 2006, 112, 219-227.	1.0	18
69	Homocysteine causes cerebrovascular leakage in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1206-H1213.	1.5	92
70	3-Deazaadenosine mitigates arterial remodeling and hypertension in hyperhomocysteinemic mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L905-L911.	1.3	49
71	Mitochondrial Mechanism of Microvascular Endothelial Cell Apoptosis Induced by Homocysteine. FASEB Journal, 2006, 20, A1461.	0.2	0
72	Inhibition of inducible nitric oxide synthase attenuates platelet adhesion in subpleural arterioles caused by lung ischemia-reperfusion in rabbits. Journal of Applied Physiology, 2005, 99, 2423-2432.	1.2	31

#	Article	IF	CITATIONS
73	Homocysteine in Microvascular Endothelial Cell Barrier Permeability. Cell Biochemistry and Biophysics, 2005, 43, 037-044.	0.9	47
74	Impaired Deformability of Copper-Deficient Neutrophils. Experimental Biology and Medicine, 2005, 230, 543-548.	1.1	11
75	Homocysteine-dependent cardiac remodeling and endothelial-myocyte coupling in a 2 kidney, 1 clip Goldblatt hypertension mouse model. Canadian Journal of Physiology and Pharmacology, 2005, 83, 583-594.	0.7	19
76	Fibrinogen and fragment D-induced vascular constriction. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1257-H1264.	1.5	30
77	Proinflammatory effects of copper deficiency on neutrophils and lung endothelial cells. Immunology and Cell Biology, 2004, 82, 231-238.	1.0	32
78	Effects of pulmonary ischemia-reperfusion on platelet adhesion in subpleural arterioles in rabbits. Microvascular Research, 2004, 67, 29-37.	1.1	24
79	INCREASED ABILITY OF ERYTHROCYTES TO AGGREGATE IN SPONTANEOUSLY HYPERTENSIVE RATS. Clinical and Experimental Hypertension, 2002, 24, 397-406.	0.5	33
80	Involvement of fibrinogen specific binding in erythrocyte aggregation. FEBS Letters, 2002, 517, 41-44.	1.3	87
81	Tissue-specific ICAM-1 expression and neutrophil transmigration in the copper-deficient rat. Inflammation, 2002, 26, 297-303.	1.7	9
82	BLOOD FLOW SHEAR RATES IN ARTERIOLES OF SPONTANEOUSLY HYPERTENSIVE RATS AT EARLY AND ESTABLISHED STAGES OF HYPERTENSION. Clinical and Experimental Hypertension, 2001, 23, 317-328.	0.5	15
83	In vitro platelet adhesion to endothelial cells at low shear rates during copper deficiency in rats. Journal of Trace Elements in Experimental Medicine, 1999, 12, 25-36.	0.8	9
84	Red Blood Cell Behavior at Low Flow Rate in Microvessels. Microvascular Research, 1999, 58, 187-189.	1.1	27
85	Platelet Thrombus Formation in Microvessels of Young Spontaneously Hypertensive Rats. Clinical and Experimental Hypertension, 1998, 20, 917-937.	0.5	9
86	In Vivo Platelet Thrombus Formation in Microvessels of Spontaneously Hypertensive Rats. American Journal of Hypertension, 1997, 10, 1140-1146.	1.0	21
87	Von Willebrand Factor Restores Impaired Platelet Thrombogenesis in Copper-Deficient Rats. Journal of Nutrition, 1997, 127, 1320-1327.	1.3	13