List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7138773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Communications in Mathematical Sciences, 2009, 7, 297-325.	0.5	397
2	A coupled chemotaxis-fluid model: Global existence. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2011, 28, 643-652.	0.7	206
3	Well-posedness for Hall-magnetohydrodynamics. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2014, 31, 555-565.	0.7	174
4	Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinetic and Related Models, 2011, 4, 901-918.	0.5	173
5	Vorticity Boundary Condition and Related Issues for Finite Difference Schemes. Journal of Computational Physics, 1996, 124, 368-382.	1.9	170
6	Projection Method I: Convergence and Numerical Boundary Layers. SIAM Journal on Numerical Analysis, 1995, 32, 1017-1057.	1.1	163
7	Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment of the pressure term. Journal of Computational Physics, 2004, 199, 221-259.	1.9	156
8	Essentially Compact Schemes for Unsteady Viscous Incompressible Flows. Journal of Computational Physics, 1996, 126, 122-138.	1.9	113
9	A High-Order Discontinuous Galerkin Method for 2D Incompressible Flows. Journal of Computational Physics, 2000, 160, 577-596.	1.9	111
10	Effects of Genotype and Environment on the Antioxidant Properties of Hard Winter Wheat Bran. Journal of Agricultural and Food Chemistry, 2006, 54, 5313-5322.	2.4	108
11	Thin film epitaxy with or without slope selection. European Journal of Applied Mathematics, 2003, 14, 713-743.	1.4	100
12	An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations. Communications in Computational Physics, 2012, 12, 955-980.	0.7	90
13	Gauge Method for Viscous Incompressible Flows. Communications in Mathematical Sciences, 2003, 1, 317-332.	0.5	90
14	Effects of Solid-State Yeast Treatment on the Antioxidant Properties and Protein and Fiber Compositions of Common Hard Wheat Bran. Journal of Agricultural and Food Chemistry, 2007, 55, 10173-10182.	2.4	83
15	Finite Difference Schemes for Incompressible Flow Based on Local Pressure Boundary Conditions. Journal of Computational Physics, 2002, 180, 120-154.	1.9	75
16	A Generalized Definition of Caputo Derivatives and Its Application to Fractional ODEs. SIAM Journal on Mathematical Analysis, 2018, 50, 2867-2900.	0.9	68
17	Cauchy problems for Keller–Segel type time–space fractional diffusion equation. Journal of Differential Equations, 2018, 265, 1044-1096.	1.1	67
18	The Effects of Numerical Viscosities. Journal of Computational Physics, 1996, 126, 373-389.	1.9	66

#	Article	IF	CITATIONS
19	Macroscopic Limits and Phase Transition in a System of Self-propelled Particles. Journal of Nonlinear Science, 2013, 23, 427-456.	1.0	66
20	Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. ESAIM: Mathematical Modelling and Numerical Analysis, 2003, 37, 319-338.	0.8	63
21	A Fourth Order Scheme for Incompressible Boussinesq Equations. Journal of Scientific Computing, 2003, 18, 253-285.	1.1	62
22	Random Batch Methods (RBM) for interacting particle systems. Journal of Computational Physics, 2020, 400, 108877.	1.9	62
23	Dynamic and Steady States for Multi-Dimensional Keller-Segel Model with Diffusion Exponent mÂ>Â0. Communications in Mathematical Physics, 2013, 323, 1017-1070.	1.0	61
24	Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate. Communications on Pure and Applied Mathematics, 2007, 60, 1443-1487.	1.2	57
25	Phase Transitions, Hysteresis, and Hyperbolicity for Self-Organized Alignment Dynamics. Archive for Rational Mechanics and Analysis, 2015, 216, 63-115.	1.1	55
26	Some Compactness Criteria for Weak Solutions of Time Fractional PDEs. SIAM Journal on Mathematical Analysis, 2018, 50, 3963-3995.	0.9	54
27	Convergence of vortex methods for weak solutions to the 2-D euler equations with vortex sheet data. Communications on Pure and Applied Mathematics, 1995, 48, 611-628.	1.2	53
28	Stable and accurate pressure approximation for unsteady incompressible viscous flow. Journal of Computational Physics, 2010, 229, 3428-3453.	1.9	51
29	A Note on Aubin-Lions-DubinskiÄ-Lemmas. Acta Applicandae Mathematicae, 2014, 133, 33-43.	0.5	50
30	Convergence of gauge method for incompressible flow. Mathematics of Computation, 2000, 69, 1385-1408.	1.1	49
31	Dynamics in a Kinetic Model of Oriented Particles with Phase Transition. SIAM Journal on Mathematical Analysis, 2012, 44, 791-826.	0.9	49
32	Hydrodynamic models of self-organized dynamics: Derivation and existence theory. Methods and Applications of Analysis, 2013, 20, 89-114.	0.1	49
33	Epitaxial Growth Without Slope Selection: Energetics, Coarsening, and Dynamic Scaling. Journal of Nonlinear Science, 2004, 14, 429-451.	1.0	47
34	Macroscopic Fluid Models with Localized Kinetic Upscaling Effects. Multiscale Modeling and Simulation, 2006, 5, 940-979.	0.6	46
35	Analysis of an Asymptotic Preserving Scheme for Linear Kinetic Equations in the Diffusion Limit. SIAM Journal on Numerical Analysis, 2010, 48, 1474-1491.	1.1	41
36	Finite Difference Methods for 3D Viscous Incompressible Flows in the Vorticity–Vector Potential Formulation on Nonstaggered Grids. Journal of Computational Physics, 1997, 138, 57-82.	1.9	40

#	Article	IF	CITATIONS
37	Energy and helicity preserving schemes for hydro- and magnetohydro-dynamics flows with symmetry. Journal of Computational Physics, 2004, 200, 8-33.	1.9	40
38	Characterization and Regularity for Axisymmetric Solenoidal Vector Fields with Application to Navier–Stokes Equation. SIAM Journal on Mathematical Analysis, 2009, 41, 1825-1850.	0.9	39
39	Projection Method II: Godunov–Ryabenki Analysis. SIAM Journal on Numerical Analysis, 1996, 33, 1597-1621.	1.1	38
40	Nonlinear stability of discrete shocks for systems of conservation laws. Archive for Rational Mechanics and Analysis, 1993, 125, 217-256.	1.1	37
41	Analysis of finite difference schemes for unsteady Navier-Stokes equations in vorticity formulation. Numerische Mathematik, 2002, 91, 543-576.	0.9	37
42	Analysis of a fourth order finite difference method for the incompressible Boussinesq equations. Numerische Mathematik, 2004, 97, 555-594.	0.9	37
43	Large-Scale Dynamics of Mean-Field Games Driven by Local Nash Equilibria. Journal of Nonlinear Science, 2014, 24, 93-115.	1.0	36
44	Evolution of the Distribution of Wealth in an Economic Environment Driven by Local Nash Equilibria. Journal of Statistical Physics, 2014, 154, 751-780.	0.5	35
45	Analysis of an Asymptotic Preserving Scheme for the Euler–Poisson System in the Quasineutral Limit. SIAM Journal on Numerical Analysis, 2008, 46, 1298-1322.	1.1	33
46	Multidimensional Degenerate Keller–Segel System with Critical Diffusion Exponent \$2n/(n+2)\$. SIAM Journal on Mathematical Analysis, 2012, 44, 1077-1102.	0.9	33
47	Boundary-layer behavior in the fluid-dynamic limit for a nonlinear model Boltzmann equation. Archive for Rational Mechanics and Analysis, 1996, 135, 61-105.	1.1	32
48	Finite Difference Schemes for Incompressible Flows in the Velocity–Impulse Density Formulation. Journal of Computational Physics, 1997, 130, 67-76.	1.9	32
49	Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations. Mathematics of Computation, 2017, 87, 1165-1189.	1.1	32
50	Boundary-layer separation and adverse pressure gradient for 2-D viscous incompressible flow. Physica D: Nonlinear Phenomena, 2004, 197, 149-173.	1.3	30
51	Convergence of a Particle Method and Global Weak Solutions of a Family of Evolutionary PDEs. SIAM Journal on Numerical Analysis, 2012, 50, 1-21.	1.1	30
52	An Exploratory Radiomics Approach to Quantifying Pulmonary Function in CT Images. Scientific Reports, 2019, 9, 11509.	1.6	30
53	Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro–macro decomposition-based asymptotic-preserving method. Research in Mathematical Sciences, 2017, 4, 1.	0.5	27
54	Stable discretization of magnetohydrodynamics in bounded domains. Communications in Mathematical Sciences, 2010, 8, 235-251.	0.5	27

#	Article	IF	CITATIONS
55	Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos. Kinetic and Related Models, 2016, 9, 715-748.	0.5	26
56	The Reconstruction of Upwind Fluxes for Conservation Laws: Its Behavior in Dynamic and Steady State Calculations. Journal of Computational Physics, 1998, 144, 237-256.	1.9	25
57	Coagulation–Fragmentation Model for Animal Group-Size Statistics. Journal of Nonlinear Science, 2017, 27, 379-424.	1.0	25
58	An Energy-Preserving MAC–Yee Scheme for the Incompressible MHD Equation. Journal of Computational Physics, 2001, 174, 12-37.	1.9	24
59	Large oscillations arising in a dispersive numerical scheme. Physica D: Nonlinear Phenomena, 1996, 99, 191-216.	1.3	23
60	Convergence Analysis of the Energy and Helicity Preserving Scheme for Axisymmetric Flows. SIAM Journal on Numerical Analysis, 2006, 44, 2456-2480.	1.1	23
61	Evolution of wealth in a non-conservative economy driven by local Nash equilibria. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130394.	1.6	22
62	On the diffusion approximation of nonconvex stochastic gradient descent. Annals of Mathematical Sciences and Applications, 2019, 4, 3-32.	0.2	22
63	Convergence of the point vortex method for 2-D vortex sheet. Mathematics of Computation, 2000, 70, 595-607.	1.1	21
64	Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem. Journal of Statistical Physics, 2017, 169, 316-339.	0.5	21
65	Convergence of the Random Batch Method for Interacting Particles with Disparate Species and Weights. SIAM Journal on Numerical Analysis, 2021, 59, 746-768.	1.1	21
66	Positivity property of second-order flux-splitting schemes for the compressible Euler equations. Discrete and Continuous Dynamical Systems - Series B, 2003, 3, 201-228.	0.5	21
67	HYDRODYNAMICS OF SELF-ALIGNMENT INTERACTIONS WITH PRECESSION AND DERIVATION OF THE LANDAU–LIFSCHITZ–GILBERT EQUATION. Mathematical Models and Methods in Applied Sciences, 2012, 22, 1140001.	1.7	20
68	\$Lsp 1\$-stability of stationary discrete shocks. Mathematics of Computation, 1993, 60, 233-233.	1.1	19
69	Generalized monotone schemes, discrete paths of extrema, and discrete entropy conditions. Mathematics of Computation, 1999, 68, 1025-1056.	1.1	19
70	Ultra-contractivity for Keller-Segel model with diffusion exponent \$m>1-2/d\$. Kinetic and Related Models, 2014, 7, 9-28.	0.5	18
71	A degenerate \$p\$-Laplacian Keller-Segel model. Kinetic and Related Models, 2016, 9, 687-714.	0.5	18
72	Concepts and Application of Time-Limiters to High Resolution Schemes. Journal of Scientific Computing, 2003, 19, 139-162.	1.1	17

#	Article	IF	CITATIONS
73	Global weak entropy solution to Doi–Saintillan–Shelley model for active and passive rod-like and ellipsoidal particle suspensions. Journal of Differential Equations, 2013, 254, 2764-2802.	1.1	17
74	A random particle blob method for the Keller-Segel equation and convergence analysis. Mathematics of Computation, 2016, 86, 725-745.	1.1	17
75	An accurate front capturing scheme for tumor growth models with a free boundary limit. Journal of Computational Physics, 2018, 364, 73-94.	1.9	17
76	Mean-field games and model predictive control. Communications in Mathematical Sciences, 2017, 15, 1403-1422.	0.5	17
77	On generating functions of Hausdorff moment sequences. Transactions of the American Mathematical Society, 2016, 368, 8499-8518.	0.5	16
78	Intrinsic radiomic expression patterns after 20 Gy demonstrate early metabolic response of oropharyngeal cancers. Medical Physics, 2021, 48, 3767-3777.	1.6	16
79	Projection method III: Spatial discretization on the staggered grid. Mathematics of Computation, 2001, 71, 27-48.	1.1	15
80	Blow-up, Zero Î \pm Limit and the Liouville Type Theorem for the Euler-Poincaré Equations. Communications in Mathematical Physics, 2012, 314, 671-687.	1.0	15
81	Elastic collisions among peakon solutions for the Camassa–Holm equation. Applied Numerical Mathematics, 2015, 93, 30-46.	1.2	15
82	Existence Theorems for a Multidimensional Crystal Surface Model. SIAM Journal on Mathematical Analysis, 2016, 48, 3667-3687.	0.9	15
83	Error estimates for finite-element Navier-Stokes solvers without standard Inf-Sup conditions. Chinese Annals of Mathematics Series B, 2009, 30, 743-768.	0.2	14
84	Propagation of chaos for large Brownian particle system with Coulomb interaction. Research in Mathematical Sciences, 2016, 3, 1.	0.5	14
85	A Note on L â^ž \$L^{infty}\$ -Bound and Uniqueness to a Degenerate Keller-Segel Model. Acta Applicandae Mathematicae, 2016, 142, 173-188.	0.5	14
86	Error estimate of a random particle blob method for the Keller-Segel equation. Mathematics of Computation, 2017, 86, 2719-2744.	1.1	14
87	On the Mean-Field Limit for the Vlasov–Poisson–Fokker–Planck System. Journal of Statistical Physics, 2020, 181, 1915-1965.	0.5	14
88	A stochastic version of Stein variational gradient descent for efficient sampling. Communications in Applied Mathematics and Computational Science, 2020, 15, 37-63.	0.7	14
89	Simple finite element method in vorticity formulation for incompressible flows. Mathematics of Computation, 2000, 70, 579-594.	1.1	13
90	Online learning in optical tomography: a stochastic approach. Inverse Problems, 2018, 34, 075010.	1.0	13

#	Article	IF	CITATIONS
91	Analysis of a sequential regularization method for the unsteady Navier-Stokes equations. Mathematics of Computation, 2008, 77, 1467-1494.	1.1	12
92	Asymptotic-preserving schemes for kinetic-fluid modeling of disperse two-phase flows. Journal of Computational Physics, 2013, 246, 145-164.	1.9	12
93	Weak Solution of a Continuum Model For Vicinal Surface in The Attachment-Detachment-Limited Regime. SIAM Journal on Mathematical Analysis, 2017, 49, 1705-1731.	0.9	12
94	Continuum dynamics of the intention field under weakly cohesive social interaction. Mathematical Models and Methods in Applied Sciences, 2017, 27, 159-182.	1.7	12
95	Partial regularity of weak solutions to a PDE system with cubic nonlinearity. Journal of Differential Equations, 2018, 264, 5489-5526.	1.1	12
96	Gradient flow approach to an exponential thin film equation: global existence and latent singularity. ESAIM - Control, Optimisation and Calculus of Variations, 2019, 25, 49.	0.7	12
97	On the mean field limit for Brownian particles with Coulomb interaction in 3D. Journal of Mathematical Physics, 2019, 60, .	0.5	12
98	L 1 -Stability of Stationary Discrete Shocks. Mathematics of Computation, 1993, 60, 233.	1.1	11
99	Data clustering based on Langevin annealing with a self-consistent potential. Quarterly of Applied Mathematics, 2019, 77, 591-613.	0.5	11
100	Global existence for Nernst–Planck–Navier–Stokes system in \$mathbb{R}^n\$. Communications in Mathematical Sciences, 2020, 18, 1743-1754.	0.5	11
101	Gauge finite element method for incompressible flows. International Journal for Numerical Methods in Fluids, 2000, 34, 701-710.	0.9	10
102	High order finite difference methods for unsteady incompressible flows in multi-connected domains. Computers and Fluids, 2004, 33, 223-255.	1.3	10
103	Two nonlinear compactness theorems in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>pApplied Mathematics Letters 2012 25 2252-2257</mml:mi></mml:mrow></mml:msup></mml:math 	mi>₹/mml	:mr8w>
104	Explicit and Implicit TVD Schemes for Conservation Laws with Caputo Derivatives. Journal of Scientific Computing, 2017, 72, 291-313.	1.1	10
105	Continuum Limit of a Mesoscopic Model with Elasticity of Step Motion on Vicinal Surfaces. Journal of Nonlinear Science, 2017, 27, 873-926.	1.0	10
106	Global stability for solutions to the exponential PDE describing epitaxial growth. Interfaces and Free Boundaries, 2019, 21, 61-86.	0.2	10
107	A structure preserving numerical scheme for Fokker-Planck equations of neuron networks: Numerical analysis and exploration. Journal of Computational Physics, 2021, 433, 110195.	1.9	10
108	Convergence of difference schemes with high resolution for conservation laws. Mathematics of Computation, 1997, 66, 1027-1054.	1.1	9

#	Article	IF	CITATIONS
109	Well-Posedness and Singular Limit of a Semilinear Hyperbolic Relaxation System with a Two-Scale Discontinuous Relaxation Rate. Archive for Rational Mechanics and Analysis, 2014, 214, 1051-1084.	1.1	9
110	A Local Pressure Boundary Condition Spectral Collocation Scheme for the Three-Dimensional Navier–Stokes Equations. Journal of Scientific Computing, 2014, 60, 612-626.	1.1	9
111	Refined hyper-contractivity and uniqueness for the Keller–Segel equations. Applied Mathematics Letters, 2016, 52, 212-219.	1.5	9
112	Asymmetry in crystal facet dynamics of homoepitaxy by a continuum model. Physica D: Nonlinear Phenomena, 2019, 393, 54-67.	1.3	9
113	Learning interacting particle systems: Diffusion parameter estimation for aggregation equations. Mathematical Models and Methods in Applied Sciences, 2019, 29, 1-29.	1.7	9
114	Large time behaviors of upwind schemes and \$B\$-schemes for Fokker-Planck equations on \$mathbb {R}\$ by jump processes. Mathematics of Computation, 2020, 89, 2283-2320.	1.1	9
115	Convergence of a Galerkin method for 2-D discontinuous Euler flows. Communications on Pure and Applied Mathematics, 2000, 53, 786-798.	1.2	8
116	A Generalized MAC Scheme on Curvilinear Domains. SIAM Journal of Scientific Computing, 2013, 35, B953-B986.	1.3	8
117	On a Schrödinger-LandauLifshitz System: Variational Structure and Numerical Methods. Multiscale Modeling and Simulation, 2016, 14, 1463-1487.	0.6	8
118	Global Convergence of a Sticky Particle Method for the Modified CamassaHolm Equation. SIAM Journal on Mathematical Analysis, 2017, 49, 1267-1294.	0.9	8
119	A note on deconvolution with completely monotone sequences and discrete fractional calculus. Quarterly of Applied Mathematics, 2017, 76, 189-198.	0.5	8
120	Maximal monotone operator theory and its applications to thin film equation in epitaxial growth on vicinal surface. Calculus of Variations and Partial Differential Equations, 2018, 57, 1.	0.9	8
121	Convergence of second-order schemes for isentropic gas dynamics. Mathematics of Computation, 1993, 61, 607-607.	1.1	7
122	Connection between corner vortices and shear layer instability in flow past an ellipse. Physics of Fluids, 1999, 11, 2446-2448.	1.6	7
123	Emergence of step flow from an atomistic scheme of epitaxial growth in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mo>+Physical Review E, 2015, 91, 032403.</mml:mo></mml:mrow></mml:math 	າວອະສາກl:r	nn⁄>1
124	Analytical Validation of a Continuum Model for the Evolution of a Crystal Surface in Multiple Space Dimensions. SIAM Journal on Mathematical Analysis, 2017, 49, 2220-2245.	0.9	7
125	A Dispersive Regularization for the Modified Camassa–Holm Equation. SIAM Journal on Mathematical Analysis, 2018, 50, 2807-2838.	0.9	7
126	Least action principles for incompressible flows and geodesics between shapes. Calculus of Variations and Partial Differential Equations, 2019, 58, 1.	0.9	7

#	Article	IF	CITATIONS
127	A domain decomposition method for semilinear hyperbolic systems with two-scale relaxations. Mathematics of Computation, 2012, 82, 749-779.	1.1	7
128	Semigroups of stochastic gradient descent and online principal component analysis: properties and diffusion approximations. Communications in Mathematical Sciences, 2018, 16, 777-789.	0.5	7
129	Analysis of a continuum theory for broken bond crystal surface models with evaporation and deposition effects. Nonlinearity, 2020, 33, 3816-3845.	0.6	7
130	A Note on the Subcritical Two Dimensional Keller-Segel System. Acta Applicandae Mathematicae, 2012, 119, 43-55.	0.5	6
131	Asymptoticâ€preserving schemes for kinetic–fluid modeling of disperse twoâ€phase flows with variable fluid density. International Journal for Numerical Methods in Fluids, 2014, 75, 81-102.	0.9	6
132	Patched peakon weak solutions of the modified Camassa–Holm equation. Physica D: Nonlinear Phenomena, 2019, 390, 15-35.	1.3	6
133	Discrete-in-time random particle blob method for the Keller–Segel equation and convergence analysis. Communications in Mathematical Sciences, 2017, 15, 1821-1842.	0.5	6
134	A note on parametric Bayesian inference via gradient flows. Annals of Mathematical Sciences and Applications, 2020, 5, 261-282.	0.2	6
135	Kinetic and viscous boundary layers for broadwell equations. Transport Theory and Statistical Physics, 1996, 25, 447-461.	0.4	5
136	Long Time Numerical Solution of the Navier–Stokes Equations Based on a Sequential Regularization Formulation. SIAM Journal of Scientific Computing, 2008, 31, 398-419.	1.3	5
137	Flow on Sweeping Networks. Multiscale Modeling and Simulation, 2014, 12, 538-565.	0.6	5
138	An Exact Solution for Stokes Flow in a Channel with Arbitrarily Large Wall Permeability. SIAM Journal on Applied Mathematics, 2015, 75, 2246-2267.	0.8	5
139	p-Euler equations and p-Navier–Stokes equations. Journal of Differential Equations, 2018, 264, 4707-4748.	1.1	5
140	Well-posedness and derivative blow-up for a dispersionless regularized shallow water system. Nonlinearity, 2019, 32, 4346-4376.	0.6	5
141	Numerical methods for oscillatory solutions to hyperbolic problems. Communications on Pure and Applied Mathematics, 1993, 46, 1327-1361.	1.2	4
142	Finite difference schemes for incompressible flows in vorticity formulations. ESAIM: Proceedings and Surveys, 1996, 1, 181-195.	0.4	4
143	A note on one-dimensional time fractional ODEs. Applied Mathematics Letters, 2018, 83, 87-94.	1.5	4
144	A Discretization of Caputo Derivatives with Application to Time Fractional SDEs and Gradient Flows.	1.1	4

#	Article	IF	CITATIONS
145	Green's function for anisotropic dispersive poroelastic media based on the Radon transform and eigenvector diagonalization. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180610.	1.0	4
146	On the rate of convergence of empirical measure in \$infty \$-Wasserstein distance for unbounded density function. Quarterly of Applied Mathematics, 2019, 77, 811-829.	0.5	4
147	Continuous and discrete one dimensional autonomous fractional ODEs. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 17-17.	0.5	4
148	Macroscopic models of collective motion and self-organization. Séminaire Laurent Schwartz — EDP Et Applications, 0, , 1-27.	0.0	4
149	Propagation of chaos for the Keller–Segel equation with a logarithmic cut-off. Methods and Applications of Analysis, 2019, 26, 319-348.	0.1	4
150	Large time behavior, bi-Hamiltonian structure, and kinetic formulation for a complex Burgers equation. Quarterly of Applied Mathematics, 2021, 79, 55-102.	0.5	4
151	Rigorous Justification of the FokkerPlanck Equations of Neural Networks Based on an Iteration Perspective. SIAM Journal on Mathematical Analysis, 2022, 54, 1270-1312.	0.9	4
152	Accurate, stable and efficient Navier?Stokes solvers based on explicit treatment of the pressure term. Journal of Computational Physics, 2004, 199, 221-221.	1.9	3
153	An FFT Based Fast Poisson Solver on Spherical Shells. Communications in Computational Physics, 2011, 9, 649-667.	0.7	3
154	Analysis of Polymeric Flow Models and Related Compactness Theorems in Weighted Spaces. SIAM Journal on Mathematical Analysis, 2013, 45, 1179-1215.	0.9	3
155	Convergence analysis of the vortex blob method for the \$b\$-equation. Discrete and Continuous Dynamical Systems, 2014, 34, 1995-2011.	0.5	3
156	Simple Finite Element Numerical Simulation of Incompressible Flow Over Non-rectangular Domains and the Super-Convergence Analysis. Journal of Scientific Computing, 2015, 65, 1189-1216.	1.1	3
157	A generalized Sz. Nagy inequality in higher dimensions and the critical thin film equation. Nonlinearity, 2017, 30, 35-60.	0.6	3
158	Global existence of solutions to a tear film model with locally elevated evaporation rates. Physica D: Nonlinear Phenomena, 2017, 350, 13-25.	1.3	3
159	Entropic sub-cell shock capturing schemes via Jin-Xin relaxation and Glimm front sampling for scalar conservation laws. Mathematics of Computation, 2017, 87, 1083-1126.	1.1	3
160	On Local Singularities in Ideal Potential Flows with Free Surface. Chinese Annals of Mathematics Series B, 2019, 40, 925-948.	0.2	3
161	Toward Understanding the Boundary Propagation Speeds in Tumor Growth Models. SIAM Journal on Applied Mathematics, 2021, 81, 1052-1076.	0.8	3
162	Surfactant-dependent contact line dynamics and droplet spreading on textured substrates: Derivations and computations. Physica D: Nonlinear Phenomena, 2021, 428, 133067.	1.3	3

#	Article	IF	CITATIONS
163	Long time behavior of dynamic solution to Peierls–Nabarro dislocation model. Methods and Applications of Analysis, 2020, 27, 161-198.	0.1	3
164	Uniform-in-time weak error analysis for stochastic gradient descent algorithms via diffusion approximation. Communications in Mathematical Sciences, 2020, 18, 163-188.	0.5	3
165	Analysis of a fourth-order exponential PDE arising from a crystal surface jump process with Metropolis-type transition rates. Pure and Applied Analysis, 2021, 3, 595-612.	0.4	3
166	Self-similar Spreading in a Merging-Splitting Model of Animal Group Size. Journal of Statistical Physics, 2019, 175, 1311-1330.	0.5	2
167	A Numerical Example on the Performance of High Order Discontinuous Galerkin Method for 2D Incompressible Flows. Lecture Notes in Computational Science and Engineering, 2000, , 369-374.	0.1	2
168	Existence and uniqueness of global weak solution to a kinetic model for the sedimentation of rod-like particles. Communications in Mathematical Sciences, 2014, 12, 1579-1601.	0.5	2
169	Effects of small viscosity and far field boundary conditions for hyperbolic systems. Communications on Pure and Applied Analysis, 2004, 3, 267-290.	0.4	1
170	Global weak solution of planetary geostrophic equations with inviscid geostrophic balance. Applicable Analysis, 2006, 85, 593-605.	0.6	1
171	Basic Themes and Pretty Problems of Nonlinear Solid Mechanics. Milan Journal of Mathematics, 2007, 75, 135-176.	0.7	1
172	Convergence Analysis of the Particle Method for the Camassa-Holm Equation. Series in Contemporary Applied Mathematics, 2012, , 365-373.	0.8	1
173	A note on Monge–Ampère Keller–Segel equation. Applied Mathematics Letters, 2016, 61, 26-34.	1.5	1
174	Existence of global weak solutions of \$ p \$-Navier-Stokes equations. Discrete and Continuous Dynamical Systems - Series B, 2022, 27, 469.	0.5	1
175	Global existence for a thin film equation with subcritical mass. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 1461-1492.	0.5	1
176	Far field boundary condition for convection diffusion equation at zero viscosity limit. Quarterly of Applied Mathematics, 2004, 62, 27-52.	0.5	1
177	Convergence of Diffusion-Drift Many Particle Systems in Probability Under aÂSobolev Norm. Springer Proceedings in Mathematics and Statistics, 2016, , 195-223.	0.1	1
178	Uniform \$L^{â^ž}\$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 307-338.	0.5	1
179	A class of functional inequalities and their applications to fourth-order nonlinear parabolic equations. Communications in Mathematical Sciences, 2020, 18, 1911-1948.	0.5	1
180	From kinetic to fluid models of liquid crystals by the moment method. Kinetic and Related Models, 2022, 15, 417.	0.5	1

#	Article	IF	CITATIONS
181	Convergence of stochastic interacting particle systems in probability under a Sobolev norm. Annals of Mathematical Sciences and Applications, 2016, 1, 251-299.	0.2	0
182	Error estimates of the aggregation-diffusion splitting algorithms for the Keller-Segel equations. Discrete and Continuous Dynamical Systems - Series B, 2016, 21, 3463-3478.	0.5	0
183	Plane-wave analysis of a hyperbolic system of equations with relaxation in \$mathbb{R}^d\$. Communications in Mathematical Sciences, 2019, 17, 61-79.	0.5	0
184	A Markov jump process modelling animal group size statistics. Communications in Mathematical Sciences, 2020, 18, 55-89.	0.5	0