Hu Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7137969/publications.pdf

Version: 2024-02-01

236612 264894 3,232 42 48 25 citations h-index g-index papers 51 51 51 5494 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fatty acid metabolism in adaptive immunity. FEBS Journal, 2023, 290, 584-599.	2.2	13
2	Antigen Specific Humoral and Cellular Immunity Following SARS-CoV-2 Vaccination in ANCA-Associated Vasculitis Patients Receiving B-Cell Depleting Therapy. Frontiers in Immunology, 2022, 13, 834981.	2.2	19
3	Stearoyl-CoA Desaturase-Mediated Monounsaturated Fatty Acid Availability Supports Humoral Immunity. Cell Reports, 2021, 34, 108601.	2.9	28
4	Histone deacetylase 3 represses cholesterol efflux during CD4+ T-cell activation. ELife, 2021, 10, .	2.8	9
5	Mevalonate metabolism–dependent protein geranylgeranylation regulates thymocyte egress. Journal of Experimental Medicine, 2020, 217, .	4.2	10
6	Homeostasis and transitional activation of regulatory T cells require c-Myc. Science Advances, 2020, 6, eaaw6443.	4.7	59
7	Protein Prenylation Drives Discrete Signaling Programs for the Differentiation and Maintenance of Effector Treg Cells. Cell Metabolism, 2020, 32, 996-1011.e7.	7.2	28
8	Immune checkpoint inhibitor-induced inflammatory arthritis: a novel clinical entity with striking similarities to seronegative rheumatoid arthritis. Clinical Rheumatology, 2020, 39, 3631-3637.	1.0	12
9	Metabolic sleuthing solves a rare immunodeficiency disease. Nature Immunology, 2019, 20, 1264-1266.	7.0	1
10	Bone marrow adipose tissue-derived stem cell factor mediates metabolic regulation of hematopoiesis. Haematologica, 2019, 104, 1731-1743.	1.7	40
11	Metabolism as a guiding force for immunity. Nature Cell Biology, 2019, 21, 85-93.	4.6	214
12	Interfer-ing with immunotherapy-induced autoimmunity. Science Translational Medicine, 2019, 11 , .	5.8	0
13	Aging T cells portend poor outcome in follicular lymphoma. Science Translational Medicine, 2019, 11, .	5.8	O
14	Discrete roles and bifurcation of PTEN signaling and mTORC1-mediated anabolic metabolism underlie IL-7–driven B lymphopoiesis. Science Advances, 2018, 4, eaar5701.	4.7	35
15	mTOR coordinates transcriptional programs and mitochondrial metabolism of activated Treg subsets to protect tissue homeostasis. Nature Communications, 2018, 9, 2095.	5.8	133
16	HNRNPH1 is required for rhabdomyosarcoma cell growth and survival. Oncogenesis, 2018, 7, 9.	2.1	21
17	A cytokine duet regulates inflammatory bowel disease. Science Translational Medicine, 2018, 10, .	5.8	1
18	Double safety reins in wayward B cells. Science Translational Medicine, 2018, 10, .	5.8	0

#	Article	IF	Citations
19	A fatty link between heart disease and autoimmunity. Science Translational Medicine, 2018, 10, .	5.8	O
20	Graft-versus-host disease: Tread carefully on T cell suppression. Science Translational Medicine, 2018, 10, .	5.8	0
21	Exploiting human T _{regs} ' sweet tooth to improve cancer immunotherapy. Science Translational Medicine, 2018, 10, .	5.8	1
22	mTOR signaling in the differentiation and function of regulatory and effector T cells. Current Opinion in Immunology, 2017, 46, 103-111.	2.4	137
23	Gfi1-Foxo1 axis controls the fidelity of effector gene expression and developmental maturation of thymocytes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E67-E74.	3.3	11
24	mTOR signaling in immune cells and its implications for cancer immunotherapy. Cancer Letters, 2017, 408, 182-189.	3.2	35
25	PLC \hat{l}^3 -dependent mTOR signalling controls IL-7-mediated early B cell development. Nature Communications, 2017, 8, 1457.	5.8	30
26	mTORC1 and mTORC2 Kinase Signaling and Glucose Metabolism Drive Follicular Helper T Cell Differentiation. Immunity, 2016, 45, 540-554.	6.6	283
27	mTOR and metabolic regulation of conventional and regulatory T cells. Journal of Leukocyte Biology, 2015, 97, 837-847.	1.5	46
28	Metabolic control of regulatory T cell development and function. Trends in Immunology, 2015, 36, 3-12.	2.9	227
29	mTOR signaling and transcriptional regulation in T lymphocytes. Transcription, 2014, 5, e28263.	1.7	35
30	Mutation in the First Ig-Like Domain of Kit Leads to JAK2 Activation and Myeloproliferation in Mice. American Journal of Pathology, 2014, 184, 122-132.	1.9	2
31	T Cell Exit from Quiescence and Differentiation into Th2 Cells Depend on Raptor-mTORC1-Mediated Metabolic Reprogramming. Immunity, 2013, 39, 1043-1056.	6.6	316
32	mTOR and lymphocyte metabolism. Current Opinion in Immunology, 2013, 25, 347-355.	2.4	85
33	mTORC1 couples immune signals and metabolic programming to establish Treg-cell function. Nature, 2013, 499, 485-490.	13.7	645
34	Tuberous sclerosis 1 (Tsc1)-dependent metabolic checkpoint controls development of dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4894-903.	3.3	76
35	The interplay between regulatory T cells and metabolism in immune regulation. Oncolmmunology, 2013, 2, e26586.	2.1	37
36	Induced senescence: a cunning Fox's new trick. Blood, 2012, 120, 1965-1966.	0.6	1

#	Article	IF	CITATIONS
37	Nuclear Export of the NF-κB Inhibitor IκBα Is Required for Proper B Cell and Secondary Lymphoid Tissue Formation. Immunity, 2011, 34, 188-200.	6.6	38
38	Nuclear Export of the NF-κB Inhibitor IκBα Is Required for Proper B Cell and Secondary Lymphoid Tissue Formation. Immunity, 2011, 34, 449.	6.6	1
39	Spatiotemporal Basis of CTLA-4 Costimulatory Molecule-Mediated Negative Regulation of T Cell Activation. Immunity, 2010, 33, 326-339.	6.6	165
40	T Cell Receptor-mediated Activation of CD4+CD44hi T Cells Bypasses Bcl10. Journal of Biological Chemistry, 2008, 283, 24392-24399.	1.6	17
41	Phosphorylation of Bcl10 Negatively Regulates T-Cell Receptor-Mediated NF-κB Activation. Molecular and Cellular Biology, 2007, 27, 5235-5245.	1.1	36
42	Bcl10 plays a critical role in NF-ÂB activation induced by G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 145-150.	3.3	99
43	Bcl10 Plays a Divergent Role in NK Cell-Mediated Cytotoxicity and Cytokine Generation. Journal of Immunology, 2007, 179, 3752-3762.	0.4	38
44	B Cell Lymphoma 10 Is Essential for Fcl μ R-Mediated Degranulation and IL-6 Production in Mast Cells. Journal of Immunology, 2007, 178, 49-57.	0.4	27
45	Alternative 3′ UTR polyadenylation of Bzw1 transcripts display differential translation efficiency and tissue-specific expression. Biochemical and Biophysical Research Communications, 2006, 345, 479-485.	1.0	25
46	Essential Role of Phospholipase \hat{C}^{32} in Early B-Cell Development and Myc-Mediated Lymphomagenesis. Molecular and Cellular Biology, 2006, 26, 9364-9376.	1.1	30
47	Atomic Force Microscopy Studies on DNA Structural Changes Induced by Vincristine Sulfate and Aspirin. Microscopy and Microanalysis, 2004, 10, 286-290.	0.2	13
48	Phosphatase of Regenerating Liver-3 Promotes Motility and Metastasis of Mouse Melanoma Cells. American Journal of Pathology, 2004, 164, 2039-2054.	1.9	153