Jaewoo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7137899/publications.pdf

Version: 2024-02-01

22 papers	158 citations	1684188 5 h-index	11 g-index
23 all docs	23 docs citations	23 times ranked	190 citing authors

#	Article	IF	CITATIONS
1	A low-loss single-pole six-throw switch based on compact RF MEMS switches. IEEE Transactions on Microwave Theory and Techniques, 2005, 53, 3335-3344.	4.6	49
2	Design and Experimental Investigation of Thermoelectric Generators for Wearable Applications. Advanced Materials Technologies, 2017, 2, 1600292.	5.8	28
3	Artificial Perspiration Membrane by Programmed Deformation of Thermoresponsive Hydrogels. Advanced Materials, 2020, 32, e1905901.	21.0	17
4	Micro energy management for energy harvesting at maximum power point. , 2011, , .		10
5	A Novel Experimental Approach to the Applicability of High-Sensitivity Giant Magneto-Impedance Sensors in Magnetic Field Communication. IEEE Access, 2020, 8, 193091-193101.	4.2	10
6	A surface-micromachined MEMS acoustic sensor with X-shape bottom electrode anchor. , 2009, , .		8
7	A concave-patterned TiN/PECVD-Si ₃ N ₄ /TiN diaphragm MEMS acoustic sensor based on a polyimide sacrificial layer. Journal of Micromechanics and Microengineering, 2015, 25, 125022.	2.6	6
8	Giant Magnetoimpedance Receiver With a Double-Superheterodyne Topology for Magnetic Communication. IEEE Access, 2021, 9, 82903-82908.	4.2	6
9	A surface-micromachined MEMS acoustic sensor with back-plate anchors of 100 µm depth. , 2011, , .		5
10	Gaped Two-Loop Antenna-Based Magnetic Transceiver With an Empirical Model for Wireless Underground Communication. IEEE Access, 2021, 9, 34962-34974.	4.2	4
11	Bottomâ€inletâ€type microâ€electroâ€mechanical system acoustic sensors based on two polyimide/amorphousâ€Si sacrificial layers. Micro and Nano Letters, 2014, 9, 845-849.	1.3	3
12	Impedance spectroscopy-based electrical equivalent model of a thermoelectric module for the figure of merit (ZT). Solid-State Electronics, 2020, 163, 107663.	1.4	3
13	A single-pole 6-throw (SP6T) antenna switch using metal-contact RF MEMS switches for multi-band applications. , 2005, , .		2
14	Structure-based equivalent circuit modeling of a capacitive-type MEMS microphone. , 2012, , .		2
15	Doping-concentration-dependent electric and thermoelectric properties of 2-dimensional silicon thin films. Journal of the Korean Physical Society, 2016, 68, 1472-1475.	0.7	1
16	CMOS-Compatible Mid-Infrared MEMS Thermopile Integrated With an RTD For Flame Sensing In IoT Application. , $2019, , .$		1
17	Wafer-Level-Based Open-Circuit Sensitivity Model from Theoretical ALEM and Empirical OSCM Parameters for a Capacitive MEMS Acoustic Sensor. Sensors, 2019, 19, 488.	3 . 8	1
18	Fabrication and Modeling of Submicon InGaP/GaAs HBTs by Using a Structure-Based Hybrid-\$pi\$ Small-Signal Model. Journal of the Korean Physical Society, 2003, 43, 918-923.	0.7	1

#	Article	IF	CITATIONS
19	A π Small-Signal Model of MEMS Series Switches Based on the Parameter- Extraction Method. , 0, , .		O
20	Fabrication and Characterization of Surface-Micromachined Compact Microheater for Gas Sensing Applications. , 2008, , .		0
21	Z-axis capacitive MEMS accelerometer with moving ground masses. , 2010, , .		O
22	The Effect of Back-chamber Volume on the Surface micromachined Acoustic Sensor. , 2014, , .		0