
Subramaniam Ganesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7137547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategies for Interference of Insulin Fibrillogenesis: Challenges and Advances. ChemBioChem, 2022, 23, .	2.6	10
2	Inhibiting Erastinâ€Induced Ferroptotic Cell Death by Purineâ€Based Chelators. ChemBioChem, 2022, 23, .	2.6	1
3	siRNA Mediated GSK3β Knockdown Targets Insulin Signaling Pathway and Rescues Alzheimer's Disease Pathology: Evidence from <i>In Vitro</i> and <i>In Vivo</i> Studies. ACS Applied Materials & Interfaces, 2022, 14, 69-93.	8.0	9
4	Age-Dependent Reduction in the Expression Levels of Genes Involved in Progressive Myoclonus Epilepsy Correlates with Increased Neuroinflammation and Seizure Susceptibility in Mouse Models. Molecular Neurobiology, 2022, 59, 5532-5548.	4.0	2
5	Trehalose Ameliorates Seizure Susceptibility in Lafora Disease Mouse Models by Suppressing Neuroinflammation and Endoplasmic Reticulum Stress. Molecular Neurobiology, 2021, 58, 1088-1101.	4.0	25
6	Dendritic spine abnormalities correlate with behavioral and cognitive deficits in mouse models of Lafora disease. Journal of Comparative Neurology, 2021, 529, 1099-1120.	1.6	8
7	Mural Cells: Potential Therapeutic Targets to Bridge Cardiovascular Disease and Neurodegeneration. Cells, 2021, 10, 593.	4.1	8
8	Dexamethasone-induced activation of heat shock response ameliorates seizure susceptibility and neuroinflammation in mouse models of Lafora disease. Experimental Neurology, 2021, 340, 113656.	4.1	9
9	Blended polar/nonpolar peptide conjugate interferes with human insulin amyloid-mediated cytotoxicity. Bioorganic Chemistry, 2021, 111, 104899.	4.1	5
10	Pesticides DEET, fipronil and maneb induce stress granule assembly and translation arrest in neuronal cells. Biochemistry and Biophysics Reports, 2021, 28, 101110.	1.3	3
11	Alterations in brain glycogen levels influence life-history traits and reduce the lifespan in female Drosophila melanogaster. Biology Open, 2021, , .	1.2	1
12	Glycogen: the missing link in neuronal autophagy?. Autophagy, 2020, 16, 2102-2104.	9.1	4
13	Perinuclear mitochondrial clustering, increased ROS levels, and HIF1 are required for the activation of HSF1 by heat stress. Journal of Cell Science, 2020, 133, .	2.0	40
14	Polyglucosan Bodies in Aged Brain and Neurodegeneration: Cause or Consequence?. , 2019, , 57-89.		5
15	Discovery of Arginine Ethyl Ester as Polyglutamine Aggregation Inhibitor: Conformational Transitioning of Huntingtin N-Terminus Augments Aggregation Suppression. ACS Chemical Neuroscience, 2019, 10, 3969-3985.	3.5	14
16	Selective Cell Adhesion on Peptide–Polymer Electrospun Fiber Mats. ACS Omega, 2019, 4, 4376-4383.	3.5	4
17	Extending Arms of Insulin Resistance from Diabetes to Alzheimer's Disease: Identification of Potential Therapeutic Targets. CNS and Neurological Disorders - Drug Targets, 2019, 18, 172-184.	1.4	14
18	Evidence for Compromised Insulin Signaling and Neuronal Vulnerability in Experimental Model of Sporadic Alzheimer's Disease. Molecular Neurobiology, 2018, 55, 8916-8935.	4.0	29

SUBRAMANIAM GANESH

#	Article	IF	CITATIONS
19	Glycogen synthase protects neurons from cytotoxicity of mutant huntingtin by enhancing the autophagy flux. Cell Death and Disease, 2018, 9, 201.	6.3	29
20	Sex-biased transgenerational effect of maternal stress on neurodevelopment and cognitive functions. Journal of Genetics, 2018, 97, 581-583.	0.7	2
21	Heat Shock-Induced Transcriptional and Translational Arrest in Mammalian Cells. Heat Shock Proteins, 2018, , 267-280.	0.2	4
22	Lafora disease: from genotype to phenotype. Journal of Genetics, 2018, 97, 611-624.	0.7	21
23	New discoveries in progressive myoclonus epilepsies: a clinical outlook. Expert Review of Neurotherapeutics, 2018, 18, 649-667.	2.8	10
24	Luminescent EullI and TbIII Complexes Containing Dopamine Neurotransmitter: Biological Interactions, Antioxidant Activity and Cellular-Imaging Studies. European Journal of Inorganic Chemistry, 2018, 2018, 3942-3951.	2.0	9
25	Sex-biased transgenerational effect of maternal stress on neurodevelopment and cognitive functions. Journal of Genetics, 2018, 97, 581-583.	0.7	2
26	Lafora disease: from genotype to phenotype. Journal of Genetics, 2018, 97, 611-624.	0.7	9
27	Loss of laforin or malin results in increased Drp1 level and concomitant mitochondrial fragmentation in Lafora disease mouse models. Neurobiology of Disease, 2017, 100, 39-51.	4.4	18
28	Loss of malin, but not laforin, results in compromised autophagic flux and proteasomal dysfunction in cells exposed to heat shock. Cell Stress and Chaperones, 2017, 22, 307-315.	2.9	7
29	Suppression of leptin signaling reduces polyglucosan inclusions and seizure susceptibility in a mouse model for Lafora disease. Human Molecular Genetics, 2017, 26, 4778-4785.	2.9	13
30	Mercuric Ion Sensing by an Overlapping βâ€ŧurn Containing Peptide. ChemistrySelect, 2017, 2, 8072-8075.	1.5	0
31	FoxO3a-mediated autophagy is down-regulated in the laforin deficient mice, an animal model for Lafora progressive myoclonus epilepsy. Biochemical and Biophysical Research Communications, 2016, 474, 321-327.	2.1	17
32	Autism genes: the continuum that connects us all. Journal of Genetics, 2016, 95, 481-483.	0.7	1
33	Human satellite-III non-coding RNAs modulate heat shock-induced transcriptional repression. Journal of Cell Science, 2016, 129, 3541-3552.	2.0	53
34	Emerging nexus between RAB GTPases, autophagy and neurodegeneration. Autophagy, 2016, 12, 900-904.	9.1	16
35	Heat shock modulates the subcellular localization, stability, and activity of HIPK2. Biochemical and Biophysical Research Communications, 2016, 472, 580-584.	2.1	9
36	Autophagy Defects and Lafora Disease. , 2016, , 187-195.		0

36 Autophagy Defects and Lafora Disease. , 2016, , 187-195.

#	Article	IF	CITATIONS
37	Interdependence of laforin and malin proteins for their stability and functions could underlie the molecular basis of locus heterogeneity in Lafora disease. Journal of Biosciences, 2015, 40, 863-871.	1.1	11
38	Lafora disease proteins laforin and malin negatively regulate the HIPK2-p53 cell death pathway. Biochemical and Biophysical Research Communications, 2015, 464, 106-111.	2.1	15
39	Decreased O-Linked GlcNAcylation Protects from Cytotoxicity Mediated by Huntingtin Exon1 Protein Fragment. Journal of Biological Chemistry, 2014, 289, 13543-13553.	3.4	54
40	Association of the GRM4 gene variants with juvenile myoclonic epilepsy in an Indian population. Journal of Genetics, 2014, 93, 193-197.	0.7	12
41	The SCN1A gene variants and epileptic encephalopathies. Journal of Human Genetics, 2013, 58, 573-580.	2.3	72
42	Activation of serum/glucocorticoid-induced kinase 1 (SGK1) underlies increased glycogen levels, mTOR activation, and autophagy defects in Lafora disease. Molecular Biology of the Cell, 2013, 24, 3776-3786.	2.1	39
43	Dysfunctions in endosomal–lysosomal and autophagy pathways underlie neuropathology in a mouse model for Lafora disease. Human Molecular Genetics, 2012, 21, 175-184.	2.9	85
44	Autophagy defects in Lafora disease. Autophagy, 2012, 8, 289-290.	9.1	18
45	Phenotype variations in Lafora progressive myoclonus epilepsy: possible involvement of genetic modifiers?. Journal of Human Genetics, 2012, 57, 283-285.	2.3	17
46	The Laforin-Malin Complex Negatively Regulates Glycogen Synthesis by Modulating Cellular Glucose Uptake via Glucose Transporters. Molecular and Cellular Biology, 2012, 32, 652-663.	2.3	41
47	Identification and characterization of novel splice variants of the human EPM2A gene mutated in Lafora progressive myoclonus epilepsy. Genomics, 2012, 99, 36-43.	2.9	14
48	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
49	Lafora disease E3 ubiquitin ligase malin is recruited to the processing bodies and regulates the microRNA-mediated gene silencing process via the decapping enzyme Dcp1a. RNA Biology, 2012, 9, 1440-1449.	3.1	20
50	Progressive Myoclonus Epilepsy of Lafora. , 2012, , 874-877.		13
51	Association of ADAM33 gene polymorphisms with asthma in Indian children. Journal of Human Genetics, 2011, 56, 188-195.	2.3	35
52	Proline repeats, in cis- and trans-positions, confer protection against the toxicity of misfolded proteins in a mammalian cellular model. Neuroscience Research, 2011, 70, 435-441.	1.9	5
53	Increased glucose concentration results in reduced proteasomal activity and the formation of glycogen positive aggresomal structures. FEBS Journal, 2011, 278, 3688-3698.	4.7	12
54	Association of ADAM33 gene polymorphisms with adult-onset asthma and its severity in an Indian adult population. Journal of Genetics, 2011, 90, 265-273.	0.7	20

#	Article	IF	CITATIONS
55	Malin and laforin are essential components of a protein complex that protects cells from thermal stress. Journal of Cell Science, 2011, 124, 2277-2286.	2.0	42
56	Gene defects in progressive myoclonus epilepsy. Epilepsia, 2010, 51, 75-75.	5.1	1
57	juvenile myoclonic epilepsy: efhc1 at the cross-roads ?. Annals of Neurosciences, 2010, 17, 57-9.	1.7	1
58	Laforin in autophagy: A possible link between carbohydrate and protein in Lafora disease?. Autophagy, 2010, 6, 1229-1231.	9.1	22
59	Protein quality control mechanisms and neurodegenerative disorders: Checks, balances and deadlocks. Neuroscience Research, 2010, 68, 159-166.	1.9	23
60	Hyperphosphorylation and Aggregation of Tau in Laforin-deficient Mice, an Animal Model for Lafora Disease. Journal of Biological Chemistry, 2009, 284, 22657-22663.	3.4	52
61	The malin–laforin complex suppresses the cellular toxicity of misfolded proteins by promoting their degradation through the ubiquitin–proteasome system. Human Molecular Genetics, 2009, 18, 688-700.	2.9	106
62	Lafora progressive myoclonus epilepsy: A meta-analysis of reported mutations in the first decade following the discovery of the <i>EPM2A</i> and <i>NHLRC1</i> genes. Human Mutation, 2009, 30, 715-723.	2.5	171
63	Association between inflammatory gene polymorphisms and coronary artery disease in an Indian population. Journal of Thrombosis and Thrombolysis, 2009, 27, 88-94.	2.1	47
64	Spatial positions of homopolymeric repeats in the human proteome and their effect on cellular toxicity. Biochemical and Biophysical Research Communications, 2009, 380, 382-386.	2.1	8
65	Satellite III non-coding RNAs show distinct and stress-specific patterns of induction. Biochemical and Biophysical Research Communications, 2009, 382, 102-107.	2.1	30
66	Mannosylated self-assembled structures for molecular confinement and gene delivery applications. Biochemical and Biophysical Research Communications, 2009, 378, 503-506.	2.1	15
67	Non-coding RNAs in polyglutamine disorders: friend or foe?. Journal of Biosciences, 2008, 33, 303-306.	1.1	3
68	Lafora disease in the Indian population:EPM2A andNHLRC1 gene mutations and their impact on subcellular localization of laforin and malin. Human Mutation, 2008, 29, E1-E12.	2.5	23
69	Inflammatory system gene polymorphism and the risk of stroke: A case–control study in an Indian population. Brain Research Bulletin, 2008, 75, 158-165.	3.0	82
70	Modulation of functional properties of laforin phosphatase by alternative splicing reveals a novel mechanism for the EPM2A gene in Lafora progressive myoclonus epilepsy. Human Molecular Genetics, 2008, 17, 3010-3020.	2.9	31
71	Tandem repeats in human disorders: mechanisms and evolution. Frontiers in Bioscience - Landmark, 2008, Volume, 4467.	3.0	23
72	Lafora disease proteins malin and laforin are recruited to aggresomes in response to proteasomal impairment. Human Molecular Genetics, 2007, 16, 753-762.	2.9	84

SUBRAMANIAM GANESH

#	Article	IF	CITATIONS
73	Association of gene polymorphism with genetic susceptibility to stroke in Asian populations: a meta-analysis. Journal of Human Genetics, 2007, 52, 205-219.	2.3	77
74	Recent advances in the molecular basis of Lafora's progressive myoclonus epilepsy. Journal of Human Genetics, 2006, 51, 1-8.	2.3	130
75	Genomic and Evolutionary Insights into Genes Encoding Proteins with Single Amino Acid Repeats. Molecular Biology and Evolution, 2006, 23, 1357-1369.	8.9	31
76	Mutations in the NHLRC1 gene are the common cause for Lafora disease in the Japanese population. Journal of Human Genetics, 2005, 50, 347-352.	2.3	32
77	Neuronal survival in epilepsy: To die or not to die?. Journal of Biosciences, 2005, 30, 561-566.	1.1	6
78	Transcriptional profiling of a mouse model for Lafora disease reveals dysregulation of genes involved in the expression and modification of proteins. Neuroscience Letters, 2005, 387, 62-67.	2.1	5
79	Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nature Genetics, 2004, 36, 842-849.	21.4	329
80	The carbohydrate-binding domain of Lafora disease protein targets Lafora polyglucosan bodies. Biochemical and Biophysical Research Communications, 2004, 313, 1101-1109.	2.1	72
81	Recent Developments in the Quest for Myoclonic Epilepsy Genes. Epilepsia, 2003, 44, 13-26.	5.1	17
82	The Lafora disease gene product laforin interacts with HIRIP5, a phylogenetically conserved protein containing a NifU-like domain. Human Molecular Genetics, 2003, 12, 2359-2368.	2.9	43
83	Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Human Molecular Genetics, 2002, 11, 1251-1262.	2.9	212
84	Genotype-phenotype correlations for EPM2A mutations in Lafora's progressive myoclonus epilepsy: exon 1 mutations associate with an early-onset cognitive deficit subphenotype. Human Molecular Genetics, 2002, 11, 1263-1271.	2.9	82
85	Alternative Splicing Modulates Subcellular Localization of Laforin. Biochemical and Biophysical Research Communications, 2002, 291, 1134-1137.	2.1	24
86	DSCAM, a Highly Conserved Gene in Mammals, Expressed in Differentiating Mouse Brain. Biochemical and Biophysical Research Communications, 2001, 281, 697-705.	2.1	47
87	Regional and Developmental Expression of Epm2a Gene and Its Evolutionary Conservation. Biochemical and Biophysical Research Communications, 2001, 283, 1046-1053.	2.1	44
88	Cloning and Functional Characterization of DSCAML1, a Novel DSCAM-like Cell Adhesion Molecule That Mediates Homophilic Intercellular Adhesion. Biochemical and Biophysical Research Communications, 2001, 285, 760-772.	2.1	64
89	A Novel Gene in the Chromosomal Region for Juvenile Myoclonic Epilepsy on 6p12 Encodes a Brain-Specific Lysosomal Membrane Protein. Biochemical and Biophysical Research Communications, 2001, 288, 626-636.	2.1	14
90	Dscam is associated with axonal and dendritic features of neuronal cells. Journal of Neuroscience Research, 2001, 66, 337-346.	2.9	25

#	Article	IF	CITATIONS
91	Advances in the genetics of progressive myoclonus epilepsy. American Journal of Medical Genetics Part A, 2001, 106, 129-138.	2.4	83
92	Isolation and Characterization of Mouse Homologue for the Human Epilepsy Gene,EPM2A. Biochemical and Biophysical Research Communications, 1999, 257, 24-28.	2.1	18
93	CvSox-4, the lizard homologue of the human SOX4 gene, shows remarkable conservation among the amniotes. Gene, 1997, 196, 287-290.	2.2	4
94	Male-biased distribution of the human Y chromosomal genes SRY and ZFY in the lizard Calotes versicolor, which lacks sex chromosomes and temperature-dependent sex determination. Chromosome Research, 1997, 5, 413-419.	2.2	14