Dorianna SandonÃ

List of Publications by Year

 in descending orderSource: https:||exaly.com/author-pdf/7137220/publications.pdf
Version: 2024-02-01

| 35 | citations |
| :---: | :---: | :---: | :---: | :---: |
| papers | |
| all docs | |

CFTR corrector C17 is effective in muscular dystrophy, <i>in vivo < i\rangle proof of concept in LGMDR3.
Human Molecular Genetics, 2022, 31, 499-509.

Targeting of PFKFB3 with miRâ€206 but not mirâ€26b inhibits ovarian cancer cell proliferation and migration involving FAK downregulation. FASEB Journal, 2022, 36, e22140.

Customized bioreactor enables the production of 3D diaphragmatic constructs influencing matrix remodeling and fibroblast overgrowth. Npj Regenerative Medicine, 2022, 7, 25.

Nonâ€genomic mechanisms in the estrogen regulation of glycolytic protein levels in endothelial cells.
FASEB Journal, 2020, 34, 12768-12784.

Combined Use of CFTR Correctors in LGMD2D Myotubes Improves Sarcoglycan Complex Recovery.
International Journal of Molecular Sciences, 2020, 21, 1813.

Repairing folding-defective $\hat{l}_{ \pm}$-sarcoglycan mutants by CFTR correctors, a potential therapy for limb-girdle muscular dystrophy 2D. Human Molecular Genetics, 2018, 27, 969-984.
2.9

1st International Workshop on Clinical trial readiness for sarcoglycanopathies 15 â $€^{\text {"s }} 16$ November 2016,
$7 \quad$ Evry, France. Neuromuscular Disorders, 2017, 27, 683-692.
0.6

Emerging therapeutic strategies for sarcoglycanopathy. Expert Opinion on Orphan Drugs, 2017, 5,
8 381-396.
0.8

6

9 Unveiling the degradative route of the V247M $\hat{I}_{ \pm}$-sarcoglycan mutant responsible for LGMD-2D. Human
Molecular Genetics, 2014, 23, 3746-3758.
Inhibition of Ubiquitin Proteasome System Rescues the Defective Sarco(endo)plasmic Reticulum
10 Ca2+-ATPase (SERCA1) Protein Causing Chianina Cattle Pseudomyotonia. Journal of Biological Chemistry, 2014, 289, 33073-33082.
Effects of Pleiotrophin Overexpression on Mouse Skeletal Muscles in Normal Loading and in Actual
and Simulated Microgravity. PLoS ONE, 2013, 8, e72028.

Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission. PLoS ONE, 2012, 7, e33232.

Extracellular ATP signaling during differentiation of C2C12 skeletal muscle cells: role in proliferation. Molecular and Cellular Biochemistry, 2011, 351, 183-196.

Sphingosine 1-phosphate signaling is involved in skeletal muscle regeneration. American Journal of Physiology - Cell Physiology, 2010, 298, C550-C558.

Sarcoglycanopathies: molecular pathogenesis and therapeutic prospects. Expert Reviews in Molecular Medicine, 2009, 11, e28.

Inhibition of Proteasome Activity Promotes the Correct Localization of Disease-Causing $\hat{I} \pm$-Sarcoglycan
16 Mutants in HEK-293 Cells Constitutively Expressing $\hat{I}^{2}-$, ${ }^{3}$-, and \hat{l}^{\prime}-Sarcoglycan. American Journal of
Pathology, 2008, 173, 170-181.
Stimulation of P2 receptors causes release of IL-1 1 ̂âá"loaded microvesicles from human dendritic cells.
Blood, 2007, 109, 3856-3864.
1.4

229
19

> Deficiency of $\hat{I} \pm$-sarcoglycan differently affects fast- and slow-twitch skeletal muscles. American
> Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1328-R1337.
1.8

34

The Tâ€tubule membrane ATPâ€operated P2X 4 receptor influences contractility of skeletal muscle. FASEB Journal, 2005, 19, 1184-1186.
Characterization of the ATP-hydrolysing activity of $\hat{\mathrm{I}} \pm$-sarcoglycan. Biochemical Journal, 2004, 381,
$105-112$.

$22 \quad$| Subcellular distribution of Homer $1 \mathrm{~b} / \mathrm{c}$ in relation to endoplasmic reticulum and plasma membrane |
| :--- |
| proteins in Purkinje neurons. Neurochemical Research, 2003, 28, 1151-1158. |

Evidence for the Presence of Two Homer 1 Transcripts in Skeletal and Cardiac Muscles. Biochemical 2.1 39
and Biophysical Research Communications, 2000, 279, 348-353.

23

25 | Orientation of Chlorophyll Transition Moments in the Higher-Plant Light-Harvesting Complex CP29. |
| :--- |
| Biochemistry, 1999, 38, 12974-12983. |

26 either protein or chromophore moieties. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365 207-214.

27	Analysis of Some Optical Properties of a Native and Reconstituted Photosystem II Antenna Complex, CP29:â€\%o Pigment Binding Sites Can Be Occupied by Chlorophyll a or Chlorophyll b and Determine Spectral Forms. Biochemistry, 1997, 36, 12984-12993.	2.5	76
28	A single point mutation (E166Q) prevents dicyclohexylcarbodiimide binding to the photosystem II subunit CP29. FEBS Letters, 1997, 402, 151-156.	2.8	74
29	Novel aspects of chlorophyll a/b-binding proteins. Physiologia Plantarum, 1997, 100, 769-779.	5.2	94
30	Novel aspects of chlorophyll a/b-binding proteins. Physiologia Plantarum, 1997, 100, 769-779.	5.2	14
31	Expression of Cytochrome c Oxidase during Growth and Development of Dictyostelium. Journal of Biological Chemistry, 1995, 270, 5587-5593.	3.4	19
32	Inhibition of the synthesis of a cytochrome-c-oxidase subunit isoform by antisense RNA. FEBS Journal, 1994, 219, 1053-1061.	0.2	7
33	Structure of the promoter region of the gene encoding cytochrome c oxidase subunit V in Dictyostelium. FEBS Journal, 1993, 211, 411-414.	0.2	3
34	The most conserved nuclear-encoded polypeptide of cytochrome coxidase is the putative zinc-binding subunit: primary structure of subunit V from the slime mold Dictyostelium discoideum. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1129, 100-104.	2.4	22
35	The two oxygen-regulated subunits of cytochromecoxidase inDictyostelium discoideumderive from a common ancestor. FEBS Letters, 1990, 261, 158-160.	2.8	12

