Dorianna SandonÃ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7137220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CFTR corrector C17 is effective in muscular dystrophy, <i>in vivo</i> proof of concept in LGMDR3. Human Molecular Genetics, 2022, 31, 499-509.	2.9	7
2	Targeting of PFKFB3 with miRâ€206 but not mirâ€26b inhibits ovarian cancer cell proliferation and migration involving FAK downregulation. FASEB Journal, 2022, 36, e22140.	0.5	9
3	Customized bioreactor enables the production of 3D diaphragmatic constructs influencing matrix remodeling and fibroblast overgrowth. Npj Regenerative Medicine, 2022, 7, 25.	5.2	5
4	Nonâ€genomic mechanisms in the estrogen regulation of glycolytic protein levels in endothelial cells. FASEB Journal, 2020, 34, 12768-12784.	0.5	18
5	Combined Use of CFTR Correctors in LGMD2D Myotubes Improves Sarcoglycan Complex Recovery. International Journal of Molecular Sciences, 2020, 21, 1813.	4.1	6
6	Repairing folding-defective α-sarcoglycan mutants by CFTR correctors, a potential therapy for limb-girdle muscular dystrophy 2D. Human Molecular Genetics, 2018, 27, 969-984.	2.9	19
7	1st International Workshop on Clinical trial readiness for sarcoglycanopathies 15–16 November 2016, Evry, France. Neuromuscular Disorders, 2017, 27, 683-692.	0.6	9
8	Emerging therapeutic strategies for sarcoglycanopathy. Expert Opinion on Orphan Drugs, 2017, 5, 381-396.	0.8	6
9	Unveiling the degradative route of the V247M α-sarcoglycan mutant responsible for LGMD-2D. Human Molecular Genetics, 2014, 23, 3746-3758.	2.9	36
10	Inhibition of Ubiquitin Proteasome System Rescues the Defective Sarco(endo)plasmic Reticulum Ca2+-ATPase (SERCA1) Protein Causing Chianina Cattle Pseudomyotonia. Journal of Biological Chemistry, 2014, 289, 33073-33082.	3.4	14
11	Effects of Pleiotrophin Overexpression on Mouse Skeletal Muscles in Normal Loading and in Actual and Simulated Microgravity. PLoS ONE, 2013, 8, e72028.	2.5	24
12	Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission. PLoS ONE, 2012, 7, e33232.	2.5	144
13	Extracellular ATP signaling during differentiation of C2C12 skeletal muscle cells: role in proliferation. Molecular and Cellular Biochemistry, 2011, 351, 183-196.	3.1	32
14	Sphingosine 1-phosphate signaling is involved in skeletal muscle regeneration. American Journal of Physiology - Cell Physiology, 2010, 298, C550-C558.	4.6	54
15	Sarcoglycanopathies: molecular pathogenesis and therapeutic prospects. Expert Reviews in Molecular Medicine, 2009, 11, e28.	3.9	90
16	Inhibition of Proteasome Activity Promotes the Correct Localization of Disease-Causing α-Sarcoglycan Mutants in HEK-293 Cells Constitutively Expressing β-, γ-, and δ-Sarcoglycan. American Journal of Pathology, 2008, 173, 170-181.	3.8	48
17	Stimulation of P2 receptors causes release of IL-1β–loaded microvesicles from human dendritic cells. Blood, 2007, 109, 3856-3864.	1.4	229
18	Transition of Homer isoforms during skeletal muscle regeneration. American Journal of Physiology - Cell Physiology, 2006, 290, C711-C718.	4.6	17

Dorianna SandonÃ

#	Article	IF	CITATIONS
19	Deficiency of α-sarcoglycan differently affects fast- and slow-twitch skeletal muscles. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1328-R1337.	1.8	34
20	The Tâ€ŧubule membrane ATPâ€operated P2X 4 receptor influences contractility of skeletal muscle. FASEB Journal, 2005, 19, 1184-1186.	0.5	42
21	Characterization of the ATP-hydrolysing activity of α-sarcoglycan. Biochemical Journal, 2004, 381, 105-112.	3.7	38
22	Subcellular distribution of Homer 1b/c in relation to endoplasmic reticulum and plasma membrane proteins in Purkinje neurons. Neurochemical Research, 2003, 28, 1151-1158.	3.3	20
23	Evidence for the Presence of Two Homer 1 Transcripts in Skeletal and Cardiac Muscles. Biochemical and Biophysical Research Communications, 2000, 279, 348-353.	2.1	39
24	Chlorophyll Binding to Monomeric Light-harvesting Complex. Journal of Biological Chemistry, 1999, 274, 33510-33521.	3.4	204
25	Orientation of Chlorophyll Transition Moments in the Higher-Plant Light-Harvesting Complex CP29. Biochemistry, 1999, 38, 12974-12983.	2.5	52
26	Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 207-214.	1.0	90
27	Analysis of Some Optical Properties of a Native and Reconstituted Photosystem II Antenna Complex, CP29:  Pigment Binding Sites Can Be Occupied by Chlorophyll a or Chlorophyll b and Determine Spectral Forms. Biochemistry, 1997, 36, 12984-12993.	2.5	76
28	A single point mutation (E166Q) prevents dicyclohexylcarbodiimide binding to the photosystem II subunit CP29. FEBS Letters, 1997, 402, 151-156.	2.8	74
29	Novel aspects of chlorophyll a/b-binding proteins. Physiologia Plantarum, 1997, 100, 769-779.	5.2	94
30	Novel aspects of chlorophyll a/b-binding proteins. Physiologia Plantarum, 1997, 100, 769-779.	5.2	14
31	Expression of Cytochrome c Oxidase during Growth and Development of Dictyostelium. Journal of Biological Chemistry, 1995, 270, 5587-5593.	3.4	19
32	Inhibition of the synthesis of a cytochrome-c-oxidase subunit isoform by antisense RNA. FEBS Journal, 1994, 219, 1053-1061.	0.2	7
33	Structure of the promoter region of the gene encoding cytochrome c oxidase subunit V in Dictyostelium. FEBS Journal, 1993, 211, 411-414.	0.2	3
34	The most conserved nuclear-encoded polypeptide of cytochrome c oxidase is the putative zinc-binding subunit: primary structure of subunit V from the slime mold Dictyostelium discoideum. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1129, 100-104.	2.4	22
35	The two oxygen-regulated subunits of cytochromecoxidase inDictyostelium discoideumderive from a common ancestor. FEBS Letters, 1990, 261, 158-160.	2.8	12