Paulo Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7137214/publications.pdf

Version: 2024-02-01

84 papers

8,302 citations

35 h-index 77 g-index

87 all docs

87 docs citations

87 times ranked

18016 citing authors

#	Article	IF	CITATIONS
1	LAMP2A regulates the loading of proteins into exosomes. Science Advances, 2022, 8, eabm1140.	10.3	69
2	LAMP2A mediates the loading of proteins into endosomes and selects exosomal cargo. Autophagy, 2022, 18, 2263-2265.	9.1	4
3	Liveable cities: Current environmental challenges and paths to urban sustainability. Journal of Environmental Management, 2021, 277, 111458.	7.8	12
4	Green and Blue Infrastructure (GBI) in Urban Areas. , 2021, , 1-13.		3
5	MYOC Gene Sequencing Analysis in Primary Open-Angle Glaucoma Patients from the Centre Region of Portugal. Acta Medica Portuguesa, 2021, 34, 586.	0.4	O
6	The Role of Biobanks in the Fight against COVID-19 Pandemic: The Portuguese Response. Acta Medica Portuguesa, 2021, 35, .	0.4	0
7	Massive dissemination of a SARS-CoV-2 Spike Y839 variant in Portugal. Emerging Microbes and Infections, 2020, 9, 2488-2496.	6.5	20
8	Keep it real: selecting realistic sets of urban green space indicators. Environmental Research Letters, 2020, 15, 095001.	5.2	18
9	Exosomes and STUB1/CHIP cooperate to maintain intracellular proteostasis. PLoS ONE, 2019, 14, e0223790.	2.5	14
10	Ischaemia alters the effects of cardiomyocyteâ€derived extracellular vesicles on macrophage activation. Journal of Cellular and Molecular Medicine, 2019, 23, 1137-1151.	3.6	28
11	Elucidation of the dynamic nature of interactome networks: A practical tutorial. Journal of Proteomics, 2018, 171, 116-126.	2.4	1
12	MicroRNA-424(322) as a new marker of disease progression in pulmonary arterial hypertension and its role in right ventricular hypertrophy by targeting SMURF1. Cardiovascular Research, 2018, 114, 53-64.	3.8	72
13	Loss of Ccbe1 affects cardiac-specification and cardiomyocyte differentiation in mouse embryonic stem cells. PLoS ONE, 2018, 13, e0205108.	2.5	3
14	CCBE1 is required for coronary vessel development and proper coronary artery stem formation in the mouse heart. Developmental Dynamics, 2018, 247, 1135-1145.	1.8	17
15	Hyperglycemia-induced degradation of HIF-1α contributes to impaired response of cardiomyocytes to hypoxia. Revista Portuguesa De Cardiologia, 2017, 36, 367-373.	0.5	11
16	Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovascular Research, 2017, 113, 1338-1350.	3.8	193
17	Hyperglycemia-induced degradation of HIF-1α contributes to impaired response of cardiomyocytes to hypoxia. Revista Portuguesa De Cardiologia (English Edition), 2017, 36, 367-373.	0.2	6
18	Molecular control of chaperone-mediated autophagy. Essays in Biochemistry, 2017, 61, 663-674.	4.7	57

#	Article	IF	Citations
19	Presence of Cx43 in extracellular vesicles reduces the cardiotoxicity of the antiâ€tumour therapeutic approach with doxorubicin. Journal of Extracellular Vesicles, 2016, 5, 32538.	12.2	62
20	Accelerated age-related olfactory decline among type 1 Usher patients. Scientific Reports, 2016, 6, 28309.	3.3	10
21	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
22	Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Scientific Reports, 2015, 5, 13243.	3.3	135
23	K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Scientific Reports, 2015, 5, 10210.	3.3	77
24	Connexin 43 ubiquitination determines the fate of gap junctions: restrict to survive. Biochemical Society Transactions, 2015, 43, 471-475.	3.4	9
25	Heart ischemia results in connexin43 ubiquitination localized at the intercalated discs. Biochimie, 2015, 112, 196-201.	2.6	37
26	To beat or not to beat: degradation of Cx43 imposes the heart rhythm. Biochemical Society Transactions, 2015 , 43 , 476 - 481 .	3.4	19
27	Autophagy and Ubiquitination in Cardiovascular Diseases. DNA and Cell Biology, 2015, 34, 243-251.	1.9	25
28	Ischaemia-induced autophagy leads to degradation of gap junction protein connexin43Âin cardiomyocytes. Biochemical Journal, 2015, 467, 231-245.	3.7	74
29	Interacting Network of the Gap Junction (GJ) Protein Connexin43 (Cx43) is Modulated by Ischemia and Reperfusion in the Heart*. Molecular and Cellular Proteomics, 2015, 14, 3040-3055.	3.8	55
30	DNAJB4 molecular chaperone distinguishes WT from mutant E-cadherin, determining their fate in vitro and in vivo. Human Molecular Genetics, 2014, 23, 2094-2105.	2.9	20
31	Atorvastatin-mediated protection of the retina in a model of diabetes with hyperlipidemia. Canadian Journal of Physiology and Pharmacology, 2014, 92, 1037-1043.	1.4	11
32	AMSHâ€mediated deubiquitination of Cx43 regulates internalization and degradation of gap junctions. FASEB Journal, 2014, 28, 4629-4641.	0.5	37
33	Advanced glycation end products and diabetic nephropathy: a comparative study using diabetic and normal rats with methylglyoxal-induced glycation. Journal of Physiology and Biochemistry, 2014, 70, 173-184.	3.0	30
34	Ubiquitin–Proteasome System Impairment and MPTP-Induced Oxidative Stress in the Brain of C57BL/6 Wild-type and GSTP Knockout Mice. Molecular Neurobiology, 2013, 47, 662-672.	4.0	25
35	Methylglyoxal chronic administration promotes diabetes-like cardiac ischaemia disease in Wistar normal rats. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 1223-1230.	2.6	30
36	Diabetes Mellitus: New Challenges and Innovative Therapies. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 29-87.	0.6	5

#	Article	IF	CITATIONS
37	Anti-inflammatory activity of Cymbopogon citratus leaves infusion via proteasome and nuclear factor-ÎB pathway inhibition: Contribution of chlorogenic acid. Journal of Ethnopharmacology, 2013, 148, 126-134.	4.1	97
38	Excitotoxic stimulation downregulates the ubiquitin–proteasome system through activation of NMDA receptors in cultured hippocampal neurons. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 263-274.	3.8	37
39	STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy, 2013, 9, 1349-1366.	9.1	159
40	Autophagy modulates dynamics of connexins at the plasma membrane in a ubiquitin-dependent manner. Molecular Biology of the Cell, 2012, 23, 2156-2169.	2.1	110
41	Methylglyoxal causes structural and functional alterations in adipose tissue independently of obesity. Archives of Physiology and Biochemistry, 2012, 118, 58-68.	2.1	45
42	Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacological Research, 2012, 65, 497-506.	7.1	174
43	Regulation of the expression of interleukinâ€8 induced by 25â€hydroxycholesterol in retinal pigment epithelium cells. Acta Ophthalmologica, 2012, 90, e255-63.	1.1	9
44	Ubiquitin-mediated internalization of connexin43 is independent of the canonical endocytic tyrosine-sorting signal. Biochemical Journal, 2011, 437, 255-267.	3.7	49
45	Regulation of hypoxia-inducible factor 1 and the loss of the cellular response to hypoxia in diabetes. Diabetologia, 2011, 54, 1946-1956.	6.3	133
46	Reactive oxygen species downregulate glucose transport system in retinal endothelial cells. American Journal of Physiology - Cell Physiology, 2011, 300, C927-C936.	4.6	45
47	Diabetes mellitus: new challenges and innovative therapies. EPMA Journal, 2010, 1, 138-163.	6.1	48
48	Methylglyoxalâ€induced imbalance in the ratio of vascular endothelial growth factor to angiopoietin 2 secreted by retinal pigment epithelial cells leads to endothelial dysfunction. Experimental Physiology, 2010, 95, 955-970.	2.0	61
49	Methylglyoxal Alters the Function and Stability of Critical Components of the Protein Quality Control. PLoS ONE, 2010, 5, e13007.	2.5	45
50	The Chaperone-Dependent Ubiquitin Ligase CHIP Targets HIF- $1\hat{l}_{\pm}$ for Degradation in the Presence of Methylglyoxal. PLoS ONE, 2010, 5, e15062.	2.5	106
51	Proteasome Inactivation Promotes p38 Mitogen-activated Protein Kinase-dependent Phosphatidylinositol 3-kinase Activation and Increases Interleukin-8 Production in Retinal Pigment Epithelial Cells. Molecular Biology of the Cell, 2009, 20, 3690-3699.	2.1	30
52	Eps15 interacts with ubiquitinated Cx43 and mediates its internalization. Experimental Cell Research, 2009, 315, 3587-3597.	2.6	104
53	Sustained oxidative stress inhibits NF- \hat{l} °B activation partially via inactivating the proteasome. Free Radical Biology and Medicine, 2009, 46, 62-69.	2.9	75
54	Proteasome Inactivation Promotes p38 MAPKâ€Dependent PI3K Activation and Increases ILâ€8 Production. FASEB Journal, 2009, 23, 530.6.	0.5	0

#	Article	IF	CITATIONS
55	The Proteasome: A Target of Oxidative Damage in Cultured Human Retina Pigment Epithelial Cells., 2008, 49, 3622.		61
56	Oxidative Inactivation of the Proteasome in Retinal Pigment Epithelial Cells. Journal of Biological Chemistry, 2008, 283, 20745-20753.	3.4	62
57	Oxidative inactivation of the proteasome: a potential link between oxidative stress and upregulation of ILâ€8. FASEB Journal, 2008, 22, 1120.8.	0.5	0
58	The proteasome regulates the interaction between Cx43 and ZO-1. Journal of Cellular Biochemistry, 2007, 102, 719-728.	2.6	29
59	Diabetic Retinopathy, Inflammation, and Proteasome. , 2007, , 475-502.		0
60	The triage of damaged proteins: degradation by the ubiquitinâ€proteasome pathway or repair by molecular chaperones. FASEB Journal, 2006, 20, 741-743.	0.5	107
61	Proteasome-dependent regulation of signal transduction in retinal pigment epithelial cells. Experimental Eye Research, 2006, 83, 1472-1481.	2.6	29
62	Oxidative stress upregulates ubiquitin proteasome pathway in retinal endothelial cells. Molecular Vision, 2006, 12, 1526-35.	1.1	19
63	Subcellular Redistribution of Components of the Ubiquitin–Proteasome Pathway during Lens Differentiation and Maturation. , 2005, 46, 1386.		27
64	Ubiquitinâ€dependent lysosomal degradation of the HNEâ€modified proteins in lens epithelial cells. FASEB Journal, 2004, 18, 1424-1426.	0.5	98
65	High Glucose Down-regulates Intercellular Communication in Retinal Endothelial Cells by Enhancing Degradation of Connexin 43 by a Proteasome-dependent Mechanism. Journal of Biological Chemistry, 2004, 279, 27219-27224.	3.4	78
66	7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells. Cell Communication and Signaling, 2004, 2, 2.	6.5	14
67	Downregulation of retinal GLUT1 in diabetes by ubiquitinylation. Molecular Vision, 2004, 10, 618-28.	1.1	44
68	Cholesterol oxides mediated changes in cytoskeletal organisation involves Rho GTPasesa˜†a¯†. Experimental Cell Research, 2003, 291, 502-513.	2.6	15
69	Lens fibers have a fully functional ubiquitin-proteasome pathway. Experimental Eye Research, 2003, 76, 623-631.	2.6	46
70	Phosphorylation of connexin 43 acts as a stimuli for proteasome-dependent degradation of the protein in lens epithelial cells. Molecular Vision, 2003, 9, 24-30.	1.1	41
71	7-ketocholesterol stimulates differentiation of lens epithelial cells. Molecular Vision, 2003, 9, 497-501.	1.1	9
72	F ₂ Isoprostanes, Potential Specific Markers of Oxidative Damage in Human Retina. Ophthalmic Research, 2000, 32, 133-137.	1.9	28

#	Article	IF	CITATIONS
73	The steady-state levels of oxidative DNA damage and of lipid peroxidation (F2-isoprostanes) are not correlated in healthy human subjects. Free Radical Research, 2000, 32, 355-362.	3.3	29
74	A tracer investigation of obligatory oxidative amino acid losses in healthy, young adults. American Journal of Clinical Nutrition, 1999, 70, 474-483.	4.7	34
75	Cholesterol may act as an antioxidant in lens membranes. Current Eye Research, 1999, 18, 448-454.	1.5	29
76	Evaluation of a non-invasive fluorescence technique as a marker for diabetic lenses in vivo. Graefe's Archive for Clinical and Experimental Ophthalmology, 1999, 237, 187-192.	1.9	5
77	Increased oxidative damage to all DNA bases in patients with type II diabetes mellitus. FEBS Letters, 1999, 448, 120-122.	2.8	98
78	Age-Related Accumulation of Free Polyunsaturated Fatty Acids in Human Retina. Ophthalmic Research, 1999, 31, 273-279.	1.9	15
79	Cholesterol Oxides Accumulate in Human Cataracts. Experimental Eye Research, 1998, 66, 645-652.	2.6	61
80	An experimental model for the evaluation of lipid peroxidation in lens membranes. Current Eye Research, 1996, 15, 395-402.	1.5	8
81	Crystallin composition of human cataractous lens may be modulated by protein glycation. Graefe's Archive for Clinical and Experimental Ophthalmology, 1996, 234, S232-S238.	1.9	8
82	Bendazac decreasesin vitro glycation of human lens crystallins. Documenta Ophthalmologica, 1995, 90, 395-404.	2.2	9
83	Age-Related Changes in Normal and Cataractous Human Lens Crystallins, Separated by Fast-Performance Liquid Chromatography. Ophthalmic Research, 1994, 26, 149-157.	1.9	5
84	Cell Non-autonomous Proteostasis Regulation in Aging and Disease. Frontiers in Neuroscience, 0, 16, .	2.8	7