John M Slattery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/713701/publications.pdf

Version: 2024-02-01

		126907	128289
81	3,727	33	60
papers	citations	h-index	g-index
85	85	85	4158
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surface Structure of Alkyl/Fluoroalkylimidazolium Ionic–Liquid Mixtures. Journal of Physical Chemistry B, 2022, 126, 1962-1979.	2.6	8
2	Small-angle neutron scattering from mixtures of long- and short-chain 3-alkyl-1-methyl imidazolium bistriflimides. Physical Chemistry Chemical Physics, 2022, 24, 15811-15823.	2.8	7
3	Insights into the Composition and Structural Chemistry of Gallium(I) Triflate. Angewandte Chemie - International Edition, 2021, 60, 1567-1572.	13.8	10
4	Synthesis and mesomorphism of related series of triphilic ionic liquid crystals based on 1,2,4-triazolium cations. Journal of Molecular Liquids, 2021, 321, 114758.	4.9	13
5	Insights into the Composition and Structural Chemistry of Gallium(I) Triflate. Angewandte Chemie, 2021, 133, 1591-1596.	2.0	4
6	Probing a Ruthenium Coordination Complex at the Ionic Liquid–Vacuum Interface with Reactive-Atom Scattering, X-ray Photoelectron Spectroscopy, and Time-of-Flight Secondary Ion Mass Spectrometry. Journal of Physical Chemistry C, 2020, 124, 382-397.	3.1	5
7	Building blocks for the chemistry of perfluorinated alkoxyaluminates [Al{OC(CF ₃) ₃ } ₄] ^{â°'< sup>: simplified preparation and characterization of Li⁺å€"Cs⁺, Ag⁺, NH₄⁺, NSub>2H₇⁺ salts.}	3.3	14
8	Dalton Transactions, 2020, 49, 7766-7773. Solvent effects in palladium catalysed cross-coupling reactions. Green Chemistry, 2019, 21, 2164-2213.	9.0	203
9	Understanding unusual element-element bond formation and activation: general discussion. Faraday Discussions, 2019, 220, 376-385.	3.2	0
10	Physical methods for mechanistic understanding: general discussion. Faraday Discussions, 2019, 220, 144-178.	3.2	0
11	Mechanistic insight into organic and industrial transformations: general discussion. Faraday Discussions, 2019, 220, 282-316.	3.2	8
12	Computational and theoretical approaches for mechanistic understanding: general discussion. Faraday Discussions, 2019, 220, 464-488.	3.2	3
13	Solvent- and anion-dependent rearrangement of fluorinated carbene ligands provides access to fluorinated alkenes. Dalton Transactions, 2019, 48, 17655-17659.	3.3	4
14	Probing Conformational Heterogeneity at the Ionic Liquid–Vacuum Interface by Reactive-Atom Scattering. Journal of Physical Chemistry Letters, 2019, 10, 156-163.	4.6	11
15	Filling a Niche in "Ligand Space―with Bulky, Electronâ€Poor Phosphorus(III) Alkoxides. Chemistry - A European Journal, 2019, 25, 2262-2271.	3.3	15
16	Determining the composition of the vacuum–liquid interface in ionic-liquid mixtures. Faraday Discussions, 2018, 206, 497-522.	3.2	23
17	Structure and dynamics of ionic liquids: general discussion. Faraday Discussions, 2018, 206, 291-337.	3.2	8
18	Ionic liquids at interfaces: general discussion. Faraday Discussions, 2018, 206, 549-586.	3.2	0

#	Article	IF	CITATIONS
19	Exploring the bulk-phase structure of ionic liquid mixtures using small-angle neutron scattering. Faraday Discussions, 2018, 206, 265-289.	3.2	42
20	Phosphoramidate-Assisted Alkyne Activation: Probing the Mechanism of Proton Shuttling in a N,O-Chelated Cp*Ir(III) Complex. Organometallics, 2018, 37, 4630-4638.	2.3	8
21	1,2,4-Triazolium ions as flexible scaffolds for the construction of polyphilic ionic liquid crystals. Chemical Communications, 2018, 54, 9965-9968.	4.1	13
22	Interactions in Water–Ionic Liquid Mixtures: Comparing Protic and Aprotic Systems. Journal of Physical Chemistry B, 2017, 121, 599-609.	2.6	60
23	Nanosegregation and Structuring in the Bulk and at the Surface of Ionic-Liquid Mixtures. Journal of Physical Chemistry B, 2017, 121, 6002-6020.	2.6	82
24	A Structurally Characterized Fluoroalkyne. Angewandte Chemie - International Edition, 2017, 56, 7551-7556.	13.8	15
25	A Structurally Characterized Fluoroalkyne. Angewandte Chemie, 2017, 129, 7659-7664.	2.0	3
26	Phase behaviour and thermodynamics: general discussion. Faraday Discussions, 2017, 206, 113-139.	3.2	8
27	Structure of Amido Pyridinium Betaines: Persistent Intermolecular Câ^'Hâ‹â‹â‹N Hydrogen Bonding in Solution. Chemistry - A European Journal, 2016, 22, 3414-3421.	3.3	5
28	Hiding the Headgroup? Remarkable Similarity in Alkyl Coverage of the Surfaces of Pyrrolidinium- and Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry C, 2016, 120, 27369-27379.	3.1	15
29	Liquidâ€Crystalline Ionic Liquids as Ordered Reaction Media for the Diels–Alder Reaction. Chemistry - A European Journal, 2016, 22, 16113-16123.	3.3	35
30	Highlights from liquid salts for energy and materials – Faraday Discussion, Ningbo, China, 11–13 May 2016. Chemical Communications, 2016, 52, 12538-12554.	4.1	7
31	Supercritical CO ₂ Extraction as an Effective Pretreatment Step for Wax Extraction in a Miscanthus Biorefinery. ACS Sustainable Chemistry and Engineering, 2016, 4, 5979-5988.	6.7	43
32	Reactive-Atom Scattering from Liquid Crystals at the Liquid–Vacuum Interface: [C ₁₂ mim][BF ₄] and 4-Cyano-4′-Octylbiphenyl (8CB). Langmuir, 2016, 32, 9938-9949.	3.5	9
33	Improvements of energy conversion and storage: general discussion. Faraday Discussions, 2016, 190, 291-306.	3.2	4
34	Benefits to energy efficiency and environmental impact: general discussion. Faraday Discussions, 2016, 190, 161-204.	3.2	2
35	Advancement in knowledge of phenomena and processes: general discussion. Faraday Discussions, 2016, 190, 525-549.	3.2	0
36	Access to novel fluorovinylidene ligands via exploitation of outer-sphere electrophilic fluorination: new insights into C–F bond formation and activation. Dalton Transactions, 2016, 45, 1717-1726.	3.3	24

#	Article	IF	Citations
37	Evidence for a S _N 2-type pathway in the exchange of phosphines at a [PhSe] ⁺ centre. Dalton Transactions, 2015, 44, 110-118.	3.3	4
38	Ionic Liquid–Vacuum Interfaces Probed by Reactive Atom Scattering: Influence of Alkyl Chain Length and Anion Volume. Journal of Physical Chemistry C, 2015, 119, 5491-5505.	3.1	43
39	Outer-Sphere Electrophilic Fluorination of Organometallic Complexes. Journal of the American Chemical Society, 2015, 137, 10753-10759.	13.7	16
40	Design and synthesis of fluorescent 7-deazaadenosine nucleosides containing π-extended diarylacetylene motifs. Organic and Biomolecular Chemistry, 2015, 13, 68-72.	2.8	10
41	[Ru(η ⁵ -C ₅ H ₅)(η ⁶ -C ₁₀ H ₈)]PF <sub 2014,="" 43,="" 4565-4572.<="" a="" alkenylation="" catalyst="" c–h="" dalton="" direct="" for="" heterocycles.="" nitrogen="" of="" one-pot="" precursor="" td="" the="" transactions,=""><td>>6</td></sub> a	>6	as 14
42	Mechanistic insight into the ruthenium-catalysed anti-Markovnikov hydration of alkynes using a self-assembled complex: a crucial role for ligand-assisted proton shuttle processes. Dalton Transactions, 2014, 43, 11277-11285.	3.3	35
43	Univalent Gallium Salts of Weakly Coordinating Anions: Effective Initiators/Catalysts for the Synthesis of Highly Reactive Polyisobutylene. Organometallics, 2013, 32, 6725-6735.	2.3	77
44	The effect of water on the microstructure and properties of benzene/[bmim][AOT]/[bmim][BF4] microemulsions. Physical Chemistry Chemical Physics, 2013, 15, 19301.	2.8	16
45	Ruthenium-Mediated C–H Functionalization of Pyridine: The Role of Vinylidene and Pyridylidene Ligands. Journal of the American Chemical Society, 2013, 135, 2222-2234.	13.7	79
46	A green and efficient amine-functionalized ionic liquid/H2O catalytic system for the synthesis of $\hat{l}_{\pm},\hat{l}_{\pm}\hat{a}\in^2$ -bis(substituted benzylidene)cyclopentanones. RSC Advances, 2013, 3, 8796.	3.6	9
47	White phosphorus as a ligand for the coinage metals. Chemical Communications, 2012, 48, 1970.	4.1	38
48	How Lewis acidic is your cation? Putting phosphenium ions on the fluoride ion affinity scale. Dalton Transactions, 2012, 41, 1808-1815.	3.3	80
49	Charged Behaviour from Neutral Ligands: Synthesis and Properties of Nâ€Heterocyclic Pseudoâ€amides. Chemistry - A European Journal, 2012, 18, 4329-4336.	3.3	27
50	Columnar thermotropic mesophases formed by dimeric liquid-crystalline ionic liquids exhibiting large mesophase ranges. New Journal of Chemistry, 2011, 35, 2910.	2.8	33
51	Temperature Dependence of the Viscosity and Conductivity of Mildly Functionalized and Nonâ€Functionalized [Tf ₂ N] ^{â^3} lonic Liquids. ChemPhysChem, 2011, 12, 2296-2310.	2.1	85
52	Inelastic and Reactive Scattering Dynamics of Hyperthermal Oxygen Atoms on Ionic Liquid Surfaces: [emim][NTf[sub 2]] and [C[sub 12]mim][NTf[sub 2]]., 2011,,.		0
53	A Simple Route to Univalent Gallium Salts of Weakly Coordinating Anions. Angewandte Chemie - International Edition, 2010, 49, 3228-3231.	13.8	102
54	Anodic oxidation of organometallic sandwich complexes using [Al(OC(CF3)3)4]â^ or [AsF6]â^ as the supporting electrolyte anion. Journal of Fluorine Chemistry, 2010, 131, 1091-1095.	1.7	22

#	Article	IF	Citations
55	Comparison of donor properties of N-heterocyclic carbenes and N-donors containing the 1H-pyridin-(2E)-ylidene motif. Pure and Applied Chemistry, 2010, 82, 1663-1671.	1.9	37
56	O(³ P) Atoms as a Probe of Surface Ordering in 1-Alkyl-3-methylimidazolium-Based Ionic Liquids. Journal of Physical Chemistry Letters, 2010, 1, 429-433.	4.6	36
57	Scattering Dynamics of Hyperthermal Oxygen Atoms on Ionic Liquid Surfaces: [emim][NTf ₂] and [C ₁₂ mim][NTf ₂]. Journal of Physical Chemistry C, 2010, 114, 4015-4027.	3.1	49
58	O(³ P) Atoms as a Chemical Probe of Surface Ordering in Ionic Liquids. Journal of Physical Chemistry A, 2010, 114, 4896-4904.	2.5	45
59	Insights into the intramolecular acetate-mediated formation of ruthenium vinylidene complexes: a ligand-assisted proton shuttle (LAPS) mechanism. Dalton Transactions, 2010, 39, 10432.	3.3	37
60	Cooperative Effect of a Classical and a Weak Hydrogen Bond for the Metalâ€Induced Construction of a Selfâ€Assembled βâ€Turn Mimic. Chemistry - A European Journal, 2009, 15, 10405-10422.	3.3	36
61	Synthesis, Coordination Chemistry and Bonding of Strong Nâ€Donor Ligands Incorporating the 1 <i>H</i> à€Pyridinâ€(2 <i>E</i>)â€Ylidene (PYE) Motif. Chemistry - A European Journal, 2009, 15, 11346-11360.	3.3	46
62	Ion-tagged π-acidic alkene ligands promote Pd-catalysed allyl–aryl couplings in an ionic liquid. Chemical Communications, 2009, , 5734.	4.1	18
63	In Silico Prediction of Molecular Volumes, Heat Capacities, and Temperature-Dependent Densities of lonic Liquids. Industrial & Engineering Chemistry Research, 2009, 48, 2290-2296.	3.7	115
64	Supramolecular Bidentate Ligands by Metalâ€Directed in situ Formation of Antiparallel βâ€Sheet Structures and Application in Asymmetric Catalysis. Chemistry - A European Journal, 2008, 14, 4488-4502.	3.3	98
65	Simple Access to the Nonâ€Oxidizing Lewis Superacid PhF→Al(OR ^F) ₃ (R ^F =C(CF ₃) ₃). Angewandte Chemie - International Edition, 2008, 47, 7659-7663.	13.8	189
66	A mechanistic study into the interconversion of rhodium alkyne, alkynyl hydride and vinylidene complexes. Dalton Transactions, 2008, , 4552.	3.3	45
67	Homoleptic Cu–phosphorus and Cu–ethene complexes. Chemical Communications, 2007, , 5046.	4.1	87
68	The Dielectric Response of Room-Temperature Ionic Liquids: Effect of Cation Variationâ€. Journal of Physical Chemistry B, 2007, 111, 4775-4780.	2.6	188
69	Evidence for a SN2-Type Pathway for Phosphine Exchange in Phosphine–Phosphenium Cations, [R2PPR′3]+. Chemistry - A European Journal, 2007, 13, 6967-6974.	3.3	36
70	How to Predict the Physical Properties of Ionic Liquids: A Volume-Based Approach. Angewandte Chemie - International Edition, 2007, 46, 5384-5388.	13.8	232
71	Lithium–nitrogen and lithium–boron–nitrogencage compounds formed using the phenylhydrazido backbone. Dalton Transactions, 2006, , 1234-1238.	3.3	2
72	Semi-Empirical Methods to Predict the Physical Properties of Ionic Liquids: An Overview of Recent Developments. Zeitschrift Fur Physikalische Chemie, 2006, 220, 1343-1359.	2.8	77

#	Article	IF	CITATIONS
73	Dielectric Response of Imidazolium-Based Room-Temperature Ionic Liquids. Journal of Physical Chemistry B, 2006, 110, 12682-12688.	2.6	294
74	Why Are Ionic Liquids Liquid? A Simple Explanation Based on Lattice and Solvation Energies. Journal of the American Chemical Society, 2006, 128, 13427-13434.	13.7	537
75	Primary amido substituted diborane(4) compounds and imidodiborate(4) anions. Dalton Transactions, 2005, , 3137.	3.3	13
76	Synthetic and Structural Studies of Cyclodistib(V)azanes. Inorganic Chemistry, 2005, 44, 5495-5500.	4.0	6
77	THE AGGREGATION OF LITHIUM IMIDO BORATES. Phosphorus, Sulfur and Silicon and the Related Elements, 2004, 179, 931-932.	1.6	0
78	Title is missing!. Angewandte Chemie, 2003, 115, 2884-2888.	2.0	24
79	Selective Preparation of the [3,5-tBu2-1,2,4-C2P3] Ion and Synthesis and Structure of the Cationic Species nido-[3,5-tBu2-1,2,4-C2P3], Isoelectronic with [C5R5]. Angewandte Chemie - International Edition, 2003, 42, 2778-2782.	13.8	54
80	A bis(imido)organoarsenate dianion incorporating n-butyllithium. Dalton Transactions, 2003, , 2103.	3.3	3
81	Heterobimetallic lithium alkyltriimido aluminate cages containing the [R′Al(NR)3]4â^'tetraanion (R′ =) Tj E	ГQq1 _{.1} 1 О.:	784314 rgB <mark>T</mark>