
José M Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7136748/publications.pdf Version: 2024-02-01

Ιοςà Ο Μ δουςλ

#	Article	IF	CITATIONS
1	Catalysts for methanol steam reforming—A review. Applied Catalysis B: Environmental, 2010, 99, 43-57.	20.2	696
2	Recent advances in membrane technologies for hydrogen purification. International Journal of Hydrogen Energy, 2020, 45, 7313-7338.	7.1	202
3	Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chemical Engineering Science, 2009, 64, 1993-2002.	3.8	156
4	Segmented polymer electrolyte membrane fuel cells—A review. Renewable and Sustainable Energy Reviews, 2011, 15, 169-185.	16.4	122
5	Hydrogen production by methanol steam reforming in a membrane reactor: Palladium vs carbon molecular sieve membranes. Journal of Membrane Science, 2009, 339, 160-170.	8.2	71
6	Experimental and modeling studies on the low-temperature water-gas shift reaction in a dense Pd–Ag packed-bed membrane reactor. Chemical Engineering Science, 2011, 66, 2356-2367.	3.8	64
7	Steam reforming of methanol over a CuO/ZnO/Al2O3 catalyst, part I: Kinetic modelling. Chemical Engineering Science, 2011, 66, 4913-4921.	3.8	57
8	Phenomenological modeling of dye-sensitized solar cells under transient conditions. Solar Energy, 2011, 85, 781-793.	6.1	53
9	The influence of the support composition on the physicochemical and catalytic properties of Cu catalysts supported on Zirconia-Alumina for methanol steam reforming. Applied Catalysis B: Environmental, 2020, 277, 119243.	20.2	53
10	Steam reforming of methanol over a CuO/ZnO/Al2O3 catalyst part II: A carbon membrane reactor. Chemical Engineering Science, 2011, 66, 5523-5530.	3.8	46
11	Modelling of a high-temperature polymer electrolyte membrane fuel cell integrated with a methanol steam reformer cell. Applied Energy, 2017, 202, 6-19.	10.1	46
12	Boehmite-phenolic resin carbon molecular sieve membranes—Permeation and adsorption studies. Chemical Engineering Research and Design, 2014, 92, 2668-2680.	5.6	43
13	Self-Structuring of Lamellar Bridged Silsesquioxanes with Long Side Spacers. Journal of Physical Chemistry B, 2011, 115, 10877-10891.	2.6	36
14	Effect of fuel utilization on the carbon monoxide poisoning dynamics of Polymer Electrolyte Membrane Fuel Cells. Journal of Power Sources, 2014, 258, 122-128.	7.8	36
15	Modeling a catalytic polymeric non-porous membrane reactor. Journal of Membrane Science, 2001, 181, 241-252.	8.2	29
16	Development of a methodology to optimize the air bleed in PEMFC systems operating with low quality hydrogen. International Journal of Hydrogen Energy, 2013, 38, 16286-16299.	7.1	28
17	Study of different designs of methanol steam reformers: Experiment and modeling. International Journal of Hydrogen Energy, 2014, 39, 19970-19981.	7.1	26
18	A dynamic model for high temperature polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2011, 36, 9842-9854.	7.1	24

José M Sousa

#	Article	IF	CITATIONS
19	Methanol steam reforming in a dual-bed membrane reactor for producing PEMFC grade hydrogen. Catalysis Today, 2010, 156, 254-260.	4.4	23
20	Simulating catalytic membrane reactors using orthogonal collocation with spatial coordinates transformation. Journal of Membrane Science, 2004, 243, 283-292.	8.2	19
21	Study of AgLiLSX for Single-Stage High-Purity Oxygen Production. Industrial & Engineering Chemistry Research, 2014, 53, 15508-15516.	3.7	17
22	A study on the performance of a dense polymeric catalytic membrane reactor. Catalysis Today, 2001, 67, 281-291.	4.4	14
23	Modeling catalytic membrane reactors using an adaptive wavelet-based collocation method. Journal of Membrane Science, 2002, 208, 57-68.	8.2	13
24	Modelling a catalytic membrane reactor with plug flow pattern and a hypothetical equilibrium gas-phase reaction with Δnâ‰0. Catalysis Today, 2005, 104, 336-343.	4.4	11
25	Simulation study of a dense polymeric catalytic membrane reactor with plug–flow pattern. Chemical Engineering Journal, 2003, 95, 67-81.	12.7	10
26	Modeling a dense polymeric catalytic membrane reactor with plug flow pattern. Catalysis Today, 2003, 82, 241-254.	4.4	9
27	Improving propyne removal from propylene streams using a catalytic membrane reactor–a theoretical study. Journal of Membrane Science, 2011, 375, 124-133.	8.2	9
28	Modeling of a catalytic membrane reactor for CO removal from hydrogen streams – A theoretical study. International Journal of Hydrogen Energy, 2010, 35, 11505-11513.	7.1	8
29	Consecutive-Parallel Reactions in Nonisothermal Polymeric Catalytic Membrane Reactors. Industrial & Engineering Chemistry Research, 2006, 45, 2094-2107.	3.7	5
30	Theoretical analysis of conversion enhancement in isothermal polymeric catalytic membrane reactors. Catalysis Today, 2006, 118, 228-236.	4.4	5
31	Polymeric membranes for membrane reactors. , 2013, , 3-41.		4
32	Characterization of membranes for energy and environmental applications. , 2011, , 56-89.		3
33	Characterization of a water-based paint for corrosion protection. Journal of Coatings Technology Research, 2012, 9, 365-374.	2.5	2
34	Hydrogen production via aqueous-phase reforming for high-temperature proton exchange membrane fuel cells - a review. Open Research Europe, 0, 1, 81.	2.0	2
35	Facilitated Transport Membranes for CO2/H2 Separation. , 2018, , 359-384.		1
36	Hydrogen production via aqueous-phase reforming for high-temperature proton exchange membrane fuel cells - a review. Open Research Europe, 0, 1, 81.	2.0	1

#	Article	IF	CITATIONS
37	Hydrogen production via aqueous-phase reforming for high-temperature proton exchange membrane fuel cells - a review. Open Research Europe, 0, 1, 81.	2.0	0