
## Shigehiro Ishizuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7136602/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | An intensive field study on CO2, CH4, and N2O emissions from soils at four land-use types in Sumatra,<br>Indonesia. Global Biogeochemical Cycles, 2002, 16, 22-1-22-11.                                                                                         | 4.9 | 100       |
| 2  | Methane emissions from stems of Fraxinus mandshurica var. japonica trees in a floodplain forest. Soil<br>Biology and Biochemistry, 2007, 39, 2689-2692.                                                                                                         | 8.8 | 93        |
| 3  | Effects of phosphorus addition on N <sub>2</sub> O and NO emissions from soils of an <i>Acacia mangium</i> plantation. Soil Science and Plant Nutrition, 2010, 56, 782-788.                                                                                     | 1.9 | 83        |
| 4  | The variation of greenhouse gas emissions from soils of various land-use/cover types in Jambi province, Indonesia. Nutrient Cycling in Agroecosystems, 2005, 71, 17-32.                                                                                         | 2.2 | 74        |
| 5  | Seasonal changes in the spatial structures of N2O, CO2, and CH4 fluxes from Acacia mangium plantation soils in Indonesia. Soil Biology and Biochemistry, 2010, 42, 1512-1522.                                                                                   | 8.8 | 61        |
| 6  | Spatial structures of N2O, CO2, and CH4 fluxes from Acacia mangium plantation soils during a relatively dry season in Indonesia. Soil Biology and Biochemistry, 2008, 40, 3021-3030.                                                                            | 8.8 | 60        |
| 7  | Effects of phosphorus addition with and without ammonium, nitrate, or glucose on N2O and NO emissions from soil sampled under Acacia mangium plantation and incubated at 100Â% of the water-filled pore space. Biology and Fertility of Soils, 2013, 49, 13-21. | 4.3 | 56        |
| 8  | A pedotransfer function for estimating bulk density of forest soil in Japan affected by volcanic ash.<br>Geoderma, 2014, 213, 36-45.                                                                                                                            | 5.1 | 54        |
| 9  | Methane uptake and nitrous oxide emission in Japanese forest soils and their relationship to soil and vegetation types. Soil Science and Plant Nutrition, 2007, 53, 678-691.                                                                                    | 1.9 | 53        |
| 10 | Methane oxidation in Japanese forest soils. Soil Biology and Biochemistry, 2000, 32, 769-777.                                                                                                                                                                   | 8.8 | 49        |
| 11 | Spatial patterns of greenhouse gas emission in a tropical rainforest in Indonesia. Nutrient Cycling in Agroecosystems, 2005, 71, 55-62.                                                                                                                         | 2.2 | 46        |
| 12 | Quantitative aspects of heterogeneity in soil organic matter dynamics in a coolâ€temperate Japanese<br>beech forest: a radiocarbonâ€based approach. Global Change Biology, 2009, 15, 631-642.                                                                   | 9.5 | 46        |
| 13 | Phosphorus application reduces N2O emissions from tropical leguminous plantation soil when phosphorus uptake is occurring. Biology and Fertility of Soils, 2014, 50, 45-51.                                                                                     | 4.3 | 43        |
| 14 | Spatial and temporal variability in methane emissions from tree stems of Fraxinus mandshurica in a<br>cool-temperate floodplain forest. Biogeochemistry, 2015, 123, 349-362.                                                                                    | 3.5 | 42        |
| 15 | Methane uptake rates in Japanese forest soils depend on the oxidation ability of topsoil, with a new estimate for global methane uptake in temperate forest. Biogeochemistry, 2009, 92, 281-295.                                                                | 3.5 | 39        |
| 16 | Carbon stock in litter, deadwood and soil in Japan's forest sector and its comparison with carbon<br>stock in agricultural soils. Soil Science and Plant Nutrition, 2010, 56, 19-30.                                                                            | 1.9 | 38        |
| 17 | Potential N <sub>2</sub> O emissions from leguminous tree plantation soils in the humid tropics.<br>Global Biogeochemical Cycles, 2008, 22, .                                                                                                                   | 4.9 | 36        |
| 18 | Simple models for soil CO2, CH4, and N2O fluxes calibrated using a Bayesian approach and multi-site<br>data. Ecological Modelling, 2011, 222, 1283-1292.                                                                                                        | 2.5 | 36        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Soil greenhouse gas fluxes and C stocks as affected by phosphorus addition in a newly established<br>Acacia mangium plantation in Indonesia. Forest Ecology and Management, 2013, 310, 643-651. | 3.2 | 36        |

Methane flux and regulatory variables in soils of three equal-aged Japanese cypress (Chamaecyparis) Tj ETQq0 0 0 rgBT /Overlock 10 Tf  $\frac{1}{35}$ 

| 21 | Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures. Agricultural and Forest Meteorology, 2012, 152, 149-158. | 4.8 | 34 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 22 | Assessing changes in soil carbon stocks after land use conversion from forest land to agricultural<br>land in Japan. Geoderma, 2020, 377, 114487.                                                                        | 5.1 | 30 |
| 23 | Continuous estimation of winter carbon dioxide efflux from the snow surface in a deciduous<br>broadleaf forest. Journal of Geophysical Research, 2006, 111, .                                                            | 3.3 | 28 |
| 24 | Water-soluble Al inhibits methane oxidation at atmospheric concentration levels in Japanese forest soil. Soil Biology and Biochemistry, 2007, 39, 1730-1736.                                                             | 8.8 | 28 |
| 25 | Increasing trends of soil greenhouse gas fluxes in Japanese forests from 1980 to 2009. Scientific<br>Reports, 2011, 1, 116.                                                                                              | 3.3 | 28 |
| 26 | Spatiotemporal variation in N2O flux within a slope in a Japanese cedar (Cryptomeria japonica) forest.<br>Biogeochemistry, 2009, 96, 163-175.                                                                            | 3.5 | 26 |
| 27 | Simultaneous enzymatic saccharification and comminution for the valorization of lignocellulosic biomass toward natural products. BMC Biotechnology, 2018, 18, 79.                                                        | 3.3 | 21 |
| 28 | Temperature controls temporal variation in soil CO <sub>2</sub> efflux in a secondary beech forest in Appi Highlands, Japan. Journal of Forest Research, 2009, 14, 44-50.                                                | 1.4 | 20 |
| 29 | Separation of soil respiration into CO2emission sources using13C natural abundance in a deciduous broad-leaved forest in Japan. Soil Science and Plant Nutrition, 2007, 53, 328-336.                                     | 1.9 | 16 |
| 30 | Spatial variations in nitrous oxide and nitric oxide emission potential on a slope of Japanese cedar<br>( <i>Cryptomeria japonica</i> ) forest. Soil Science and Plant Nutrition, 2009, 55, 179-189.                     | 1.9 | 16 |
| 31 | Microbial processes responsible for nitrous oxide production from acid soils in different land-use patterns in Pasirmayang, central Sumatra, Indonesia. Nutrient Cycling in Agroecosystems, 2005, 71, 33-42.             | 2.2 | 15 |
| 32 | Effects of phosphorus application on root respiration and heterotrophic microbial respiration in Acacia mangium plantation soil. Tropics, 2013, 22, 113-118.                                                             | 0.8 | 15 |
| 33 | Effects of phosphorus and nitrogen addition on heterotrophic respiration in an Acacia mangium plantation soil in South Sumatra, Indonesia. Tropics, 2013, 22, 83-87.                                                     | 0.8 | 15 |
| 34 | Plant trait database for <i>Cryptomeria japonica</i> and <i>Chamaecyparis obtusa</i> (SugiHinoki DB):<br>Their physiology, morphology, anatomy and biochemistry. Ecological Research, 2020, 35, 274-275.                 | 1.5 | 15 |
| 35 | Relationship between N <sub>2</sub> O and NO emission potentials and soil properties in Japanese forest soils. Soil Science and Plant Nutrition, 2009, 55, 203-214.                                                      | 1.9 | 14 |
| 36 | Phosphorus addition reduced microbial respiration during the decomposition of <i> Acacia mangium</i> litter in South Sumatra, Indonesia. Tropics, 2015, 24, 113-118.                                                     | 0.8 | 14 |

SHIGEHIRO ISHIZUKA

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Assessment of soil group, site and climatic effects on soil organic carbon stocks of topsoil in<br><scp>J</scp> apanese forests. European Journal of Soil Science, 2017, 68, 547-558.                                 | 3.9 | 14        |
| 38 | Effects of phosphorus addition on N <sub>2</sub> O emissions from an <i>Acacia<br/>mangium</i> soil in relatively aerobic condition. Tropics, 2016, 25, 117-125.                                                      | 0.8 | 13        |
| 39 | Wood density and carbon and nitrogen concentrations in deadwood of <i>Chamaecyparis<br/>obtusa</i> and <i>Cryptomeria japonica</i> . Soil Science and Plant Nutrition, 2012, 58, 526-537.                             | 1.9 | 11        |
| 40 | Quantifying lignin and holocellulose content in coniferous decayed wood using near-infrared reflectance spectroscopy. Journal of Forest Research, 2014, 19, 233-237.                                                  | 1.4 | 11        |
| 41 | National-scale 3D mapping of soil organic carbon in a Japanese forest considering microtopography and tephra deposition. Geoderma, 2022, 406, 115534.                                                                 | 5.1 | 10        |
| 42 | Ecological Impact on Nitrogen and Phosphorus Cycling of a Widespread Fast-growing Leguminous<br>Tropical Forest Plantation Tree Species, Acacia mangium. Diversity, 2011, 3, 712-720.                                 | 1.7 | 9         |
| 43 | Seasonal and weather-related controls on methane emissions from the stems of mature trees in a cool-temperate forested wetland. Biogeochemistry, 2021, 156, 211-230.                                                  | 3.5 | 8         |
| 44 | Phosphorus limitation on CO <inf>2</inf> , N <inf>2</inf> O, and NO emissions from a tropical humid forest soil of South Sumatra, Indonesia. , 2010, , .                                                              |     | 7         |
| 45 | Estimating spatial variation in the effects of climate change on the net primary production of Japanese cedar plantations based on modeled carbon dynamics. PLoS ONE, 2021, 16, e0247165.                             | 2.5 | 7         |
| 46 | Sediment and carbon storages in the Yahagi River Delta during the Holocene, central Japan.<br>Quaternary Science Reviews, 2009, 28, 1472-1480.                                                                        | 3.0 | 6         |
| 47 | Effects of phosphorus application on CH4 fluxes in an Acacia mangium plantation with and without root exclusion. Tropics, 2013, 22, 13-17.                                                                            | 0.8 | 6         |
| 48 | Latitudinal gradient of C4 grass contribution to Black Soil organic carbon and correlation between<br>δ13C and the melanic index in Japanese forest stands. Biogeochemistry, 2014, 118, 339-355.                      | 3.5 | 6         |
| 49 | Contribution of Past C4 Plants Estimated from .DELTA.13C Values of Soil Organic Matter to the Black<br>Soil Genesis in Hakkoda Mountain, Northeast Japan The Quaternary Research, 1999, 38, 85-92.                    | 0.1 | 6         |
| 50 | Effects of conversion from leguminous acacia to non-leguminous eucalyptus on soil N2O emissions in tropical monoculture plantations. Forest Ecology and Management, 2021, 481, 118702.                                | 3.2 | 5         |
| 51 | POTASSIUM AND MAGNESIUM IN LEAF AND TOP SOIL AFFECTED BY TRIPLE SUPERPHOSPHATE FERTILISATION IN AN ACACIA MANGIUM PLANTATION. Journal of Tropical Forest Science, 2018, 30, 1-8.                                      | 0.2 | 4         |
| 52 | Predicting deadwood densities of Cryptomeria japonica and Chamaecyparis obtusa forests using a<br>generalized linear mixed model with a national-scale dataset. Forest Ecology and Management, 2013,<br>295, 228-238. | 3.2 | 3         |
| 53 | N2O emissions in Acacia mangium stands with different ages, in Sumatra, Indonesia. Forest Ecology<br>and Management, 2021, 498, 119539.                                                                               | 3.2 | 3         |
| 54 | Effect of Soil Air Volume Change on CH <sub>4</sub> Consumption in Brown Forest Soil. Journal of<br>Forest Research, 2001, 6, 311-313.                                                                                | 1.4 | 2         |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | lsotopic assessment of CO2 production through soil organic matter decomposition in the tropics.<br>Nutrient Cycling in Agroecosystems, 2005, 71, 109-116.                              | 2.2 | 2         |
| 56 | Soil carbon stock changes due to afforestation in Japan by the paired sampling method on an equivalent mass basis. Biogeochemistry, 2021, 153, 263-281.                                | 3.5 | 2         |
| 57 | Calculation procedures to estimate fine root production rates in forests using two-dimensional fine root data obtained by the net sheet method. Tree Physiology, 2017, 37, 697-705.    | 3.1 | 1         |
| 58 | Tree manipulation experiment for the short-term effect of tree cutting on N2O emission: A evaluation using Bayesian hierarchical modeling. Environmental Pollution, 2021, 288, 117725. | 7.5 | 1         |