Kaiyue Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7136579/publications.pdf Version: 2024-02-01

KAIVUE ZHANC

#	Article	IF	CITATIONS
1	Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate Radiation-Induced Lung Injury <i>via</i> miRNA-214-3p. Antioxidants and Redox Signaling, 2021, 35, 849-862.	2.5	61
2	The delivery of hsa-miR-11401 by extracellular vesicles can relieve doxorubicin-induced mesenchymal stem cell apoptosis. Stem Cell Research and Therapy, 2021, 12, 77.	2.4	9
3	Sulfated glycosaminoglycans in decellularized placenta matrix as critical regulators for cutaneous wound healing. Acta Biomaterialia, 2021, 122, 199-210.	4.1	33
4	Embryonic stem cell-derived extracellular vesicles promote the recovery of kidney injury. Stem Cell Research and Therapy, 2021, 12, 379.	2.4	21
5	A nitric oxide-releasing hydrogel for enhancing the therapeutic effects of mesenchymal stem cell therapy for hindlimb ischemia. Acta Biomaterialia, 2020, 113, 289-304.	4.1	48
6	Supramolecular Nanofibers Containing Arginine-Glycine-Aspartate (RGD) Peptides Boost Therapeutic Efficacy of Extracellular Vesicles in Kidney Repair. ACS Nano, 2020, 14, 12133-12147.	7.3	123
7	In vivo two-photon microscopy reveals the contribution of Sox9+ cell to kidney regeneration in a mouse model with extracellular vesicle treatment. Journal of Biological Chemistry, 2020, 295, 12203-12213.	1.6	44
8	Abstract 328: Enhanced Therapeutic Effects of Mesenchymal Stem Cells for Hindlimb Ischemia by a Nitric Oxide Hydrogel Through Mesenchymal-endothelial Transition. Circulation Research, 2020, 127, .	2.0	0
9	Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. Theranostics, 2019, 9, 6976-6990.	4.6	47
10	Dual Bioluminescence Imaging of Tumor Progression and Angiogenesis. Journal of Visualized Experiments, 2019, , .	0.2	9
11	MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials, 2019, 204, 13-24.	5.7	98
12	<i>In Vivo</i> Real-Time Imaging of Extracellular Vesicles in Liver Regeneration <i>via</i> Aggregation-Induced Emission Luminogens. ACS Nano, 2019, 13, 3522-3533.	7.3	76
13	Molecular Imaging of Therapeutic Effect of Mesenchymal Stem Cell-Derived Exosomes for Hindlimb Ischemia Treatment. Methods in Molecular Biology, 2019, 2150, 213-225.	0.4	9
14	Mesenchymal Stem Cell-Derived Extracellular Vesicles for Corneal Wound Repair. Stem Cells International, 2019, 2019, 1-9.	1.2	36
15	Self-assembled GFFYK peptide hydrogel enhances the therapeutic efficacy of mesenchymal stem cells in a mouse hindlimb ischemia model. Acta Biomaterialia, 2019, 85, 94-105.	4.1	35
16	Dppa3 is critical for Lin28a-regulated ES cells naÃ⁻ve–primed state conversion. Journal of Molecular Cell Biology, 2019, 11, 474-488.	1.5	19
17	Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. ACS Applied Materials & Interfaces, 2018, 10, 30081-30091.	4.0	271
18	Abstract 490: Enhanced Therapeutic Effects of MSC-derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment. Circulation Research, 2018, 123, .	2.0	11

KAIYUE ZHANG

#	Article	IF	CITATIONS
19	Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials, 2017, 133, 70-81.	5.7	181
20	Nitric oxide releasing hydrogel promotes endothelial differentiation of mouse embryonic stem cells. Acta Biomaterialia, 2017, 63, 190-199.	4.1	39
21	miR-15a-5p levels correlate with poor ovarian response in human follicular fluid. Reproduction, 2017, 154, 483-496.	1.1	16
22	Stat3 phosphorylation is required for embryonic stem cells ground state maintenance in 2i culture media. Oncotarget, 2017, 8, 31227-31237.	0.8	6
23	Molecular Imaging of Tumor Angiogenesis and Therapeutic Effects with Dual Bioluminescence. Current Pharmaceutical Biotechnology, 2017, 18, 422-428.	0.9	7