Jose Aguilera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7136531/publications.pdf Version: 2024-02-01

LOSE ACULLERA

#	Article	IF	CITATIONS
1	Synaptic proteins and SNARE complexes are localized in lipid rafts from rat brain synaptosomes. Biochemical and Biophysical Research Communications, 2005, 329, 117-124.	2.1	76
2	C-terminal fragment of tetanus toxin heavy chain activates Akt and MEK/ERK signalling pathways in a Trk receptor-dependent manner in cultured cortical neurons. Biochemical Journal, 2003, 373, 613-620.	3.7	55
3	Fragment C of tetanus toxin, more than a carrier. Novel perspectives in non-viral ALS gene therapy. Journal of Molecular Medicine, 2010, 88, 297-308.	3.9	52
4	The C-terminal domain of the heavy chain of tetanus toxin rescues cerebellar granule neurones from apoptotic death: involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. Journal of Neurochemistry, 2004, 90, 1227-1236.	3.9	42
5	Synaptic proteins associate with a sub-set of lipid rafts when isolated from nerve endings at physiological temperature. Biochemical and Biophysical Research Communications, 2006, 348, 1334-1342.	2.1	42
6	HC fragment (C-terminal portion of the heavy chain) of tetanus toxin activates protein kinase C isoforms and phosphoproteins involved in signal transduction. Biochemical Journal, 2001, 356, 97-103.	3.7	33
7	Fragment C of Tetanus Toxin: New Insights into Its Neuronal Signaling Pathway. International Journal of Molecular Sciences, 2012, 13, 6883-6901.	4.1	33
8	Activation of signal transduction pathways involving trkA, PLCÎ ³ -1, PKC isoforms and ERK-1/2 by tetanus toxin. FEBS Letters, 2000, 481, 177-182.	2.8	32
9	Tetanus toxin HC fragment reduces neuronal MPP+ toxicity. Molecular and Cellular Neurosciences, 2009, 41, 297-303.	2.2	31
10	Clostridium Neurotoxins Influence Serotonin Uptake and Release Differently in Rat Brain Synaptosomes. Journal of Neurochemistry, 2008, 72, 1991-1998.	3.9	30
11	Signaling through EAAT-1/GLAST in cultured Bergmann glia cells. Neurochemistry International, 2011, 59, 871-879.	3.8	29
12	The carboxyl-terminal domain of the heavy chain of tetanus toxin prevents dopaminergic degeneration and improves motor behavior in rats with striatal MPP+-lesions. Neuroscience Research, 2009, 65, 98-106.	1.9	28
13	Fragment C Domain of Tetanus Toxin Mitigates Methamphetamine Neurotoxicity and Its Motor Consequences in Mice. International Journal of Neuropsychopharmacology, 2016, 19, pyw021.	2.1	28
14	In Vivo Translocation and Down-Regulation of Protein Kinase C Following Intraventricular Administration of Tetanus Toxin. Journal of Neurochemistry, 1990, 54, 339-342.	3.9	26
15	Inhibition by tetanus toxin of sodium-dependent, high-affinity [3H]5-hydroxytryptamine uptake in rat synaptosomes. Biochemical Pharmacology, 1999, 57, 111-120.	4.4	24
16	Tetanus Toxin Enhances Protein Kinase C Activity Translocation and Increases Polyphosphoinositide Hydrolysis in Rat Cerebral Cortex Preparations. Journal of Neurochemistry, 2002, 70, 1636-1643.	3.9	23
17	The Câ€ŧerminal domain of tetanus toxin protects motoneurons against acute excitotoxic damage on spinal cord organotypic cultures. Journal of Neurochemistry, 2013, 124, 36-44.	3.9	23
18	HC fragment (C-terminal portion of the heavy chain) of tetanus toxin activates protein kinase C isoforms and phosphoproteins involved in signal transduction. Biochemical Journal, 2001, 356, 97.	3.7	23

Jose Aguilera

#	Article	IF	CITATIONS
19	Glutamate regulates eEF1A phosphorylation and ribosomal transit time in Bergmann glial cells. Neurochemistry International, 2010, 57, 795-803.	3.8	22
20	Glutamate-dependent phosphorylation of the mammalian target of rapamycin (mTOR) in Bergmann glial cells. Neurochemistry International, 2009, 55, 282-287.	3.8	21
21	Shedding of the p75NTRneurotrophin receptor is modulated by lipid rafts. FEBS Letters, 2007, 581, 1851-1858.	2.8	20
22	Brain Specific Kinase-1 BRSK1/SAD-B associates with lipid rafts: modulation of kinase activity by lipid environment. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 1124-1135.	2.4	20
23	GT1b Ganglioside Prevents Tetanus Toxin-Induced Protein Kinase C Activation and Down-Regulation in the Neonatal Brain In Vivo. Journal of Neurochemistry, 1993, 60, 709-713.	3.9	19
24	Title is missing!. Molecular and Cellular Biochemistry, 1999, 191, 97-104.	3.1	17
25	Serotonin transporter phosphorylation modulated by tetanus toxin. FEBS Letters, 2000, 486, 136-142.	2.8	17
26	Insulin-dependent regulation of GLAST/EAAT1 in Bergmann glial cells. Neuroscience Letters, 2009, 451, 134-138.	2.1	17
27	The C-terminal domain of the heavy chain of tetanus toxin given by intramuscular injection causes neuroprotection and improves the motor behavior in rats treated with 6-hydroxydopamine. Neuroscience Research, 2012, 74, 156-167.	1.9	17
28	Brain-derived neurotrophic factor and its receptors in Bergmann glia cells. Neurochemistry International, 2011, 59, 1133-1144.	3.8	16
29	Tetanus toxin-induced protein kinase C activation and elevated serotonin levels in the perinatal rat brain. FEBS Letters, 1990, 263, 61-65.	2.8	13
30	GLAST/EAAT1 regulation in cultured Bergmann glia cells: Role of the NO/cGMP signaling pathway. Neurochemistry International, 2014, 73, 139-145.	3.8	13
31	Trk receptors need neutral sphingomyelinase activity to promote cell viability. FEBS Letters, 2014, 588, 167-174.	2.8	13
32	Tetanus Toxin Hc Fragment Induces the Formation of Ceramide Platforms and Protects Neuronal Cells against Oxidative Stress. PLoS ONE, 2013, 8, e68055.	2.5	12
33	The restorative effect of intramuscular injection of tetanus toxin C-fragment in hemiparkinsonian rats. Neuroscience Research, 2014, 84, 1-9.	1.9	12
34	Differential action of nerve growth factor and phorbol ester TPA on rat synaptosomal PKC isoenzymes. Neurochemistry International, 1999, 35, 281-291.	3.8	11
35	Protein kinase CK2 associates to lipid rafts and its pharmacological inhibition enhances neurotransmitter release. FEBS Letters, 2011, 585, 414-420.	2.8	11
36	Stereotaxic Injection of Tetanus Toxin in Rat Central Nervous System Causes Alteration in Normal Levels of Monoamines. Journal of Neurochemistry, 1991, 56, 733-738.	3.9	10

Jose Aguilera

#	Article	IF	CITATIONS
37	Tetanus Toxin Modulates Serotonin Transport in Rat-Brain Neuronal Cultures. Journal of Molecular Neuroscience, 2001, 17, 303-310.	2.3	10
38	Serotonin transport is modulated differently by tetanus toxin and growth factors. Neurochemistry International, 2003, 42, 535-542.	3.8	10
39	Effectiveness of Fragment C Domain of Tetanus Toxin and Pramipexole in an Animal Model of Parkinson's Disease. Neurotoxicity Research, 2019, 35, 699-710.	2.7	10
40	17β-estradiol does not protect cerebellar granule cells from excitotoxicity or apoptosis. Journal of Neurochemistry, 2007, 102, 354-364.	3.9	9
41	Peripheral Administration of Tetanus Toxin Hc Fragment Prevents MPP+ Toxicity In Vivo. Neurotoxicity Research, 2018, 34, 47-61.	2.7	9
42	An Acute Glutamate Exposure Induces Long-Term Down Regulation of GLAST/EAAT1 Uptake Activity in Cultured Bergmann Glia Cells. Neurochemical Research, 2014, 39, 142-149.	3.3	8
43	Antidepressant effects of C-Terminal domain of the heavy chain of tetanus toxin in a rat model of depression. Behavioural Brain Research, 2019, 370, 111968.	2.2	8
44	Neuroprotective Fragment C of Tetanus Toxin Modulates IL-6 in an ALS Mouse Model. Toxins, 2020, 12, 330.	3.4	8
45	Glutamateâ€dependent transcriptional control in Bergmann glia: Sox10 as a repressor. Journal of Neurochemistry, 2009, 109, 899-910.	3.9	5
46	Differential sensitivity to detergents of actin cytoskeleton from nerve endings. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2385-2393.	2.6	5
47	Effect of the C-terminal domain of the heavy chain of tetanus toxin on dyskinesia caused by levodopa in 6-hydroxydopamine-lesioned rats. Pharmacology Biochemistry and Behavior, 2016, 145, 33-44.	2.9	5
48	Tetanus intoxication causes an increment of serotonin in the central nervous system. Experientia, 1987, 43, 410-412.	1.2	4
49	Differential Expression of Striatal ΔFosB mRNA and FosB mRNA After Different Levodopa Treatment Regimens in a Rat Model of Parkinson's Disease. Neurotoxicity Research, 2019, 35, 563-574.	2.7	3
50	Neurotrophic Properties of C-Terminal Domain of the Heavy Chain of Tetanus Toxin on Motor Neuron Disease. Toxins, 2020, 12, 666.	3.4	2
51	The Câ€ŧerminal fragment of the heavy chain of the tetanus toxin (Hcâ€ᠯeTx) improves motor activity and neuronal morphology in the limbic system of aged mice. Synapse, 2021, 75, e22193.	1.2	2
52	The C-terminal domain of the heavy chain of tetanus toxin prevents the oxidative and nitrosative stress induced by acute toxicity of 1-methyl-4-phenylpyridinium, a rat model of Parkinson's disease. Neuroscience Research, 2022, 174, 36-45.	1.9	2
53	Interaction between a Novel Oligopeptide Fragment of the Human Neurotrophin Receptor TrkB Ectodomain D5 and the C-Terminal Fragment of Tetanus Neurotoxin. Molecules, 2021, 26, 3988.	3.8	1