
Sheng-Shu Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7136337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigations of silane-MDP interaction in universal adhesives: A ToF-SIMS analysis. Dental Materials, 2022, 38, 183-193.	1.6	12
2	Non-photochromic solar energy storage in carbon nitride surpassing blue radicals for hydrogen production. Journal of Materials Chemistry A, 2022, 10, 7728-7738.	5.2	13
3	Interaction of silane with 10-MDP on affecting surface chemistry and resin bonding of zirconia. Dental Materials, 2022, 38, 715-724.	1.6	9
4	Postinjection gelation of an electrolyte with high storage permittivity and low loss permittivity for electrochemical capacitors. Journal of Power Sources, 2021, 481, 228869.	4.0	12
5	Bridging Functional Groups Governing the Charge Transfer Dynamic in an Amorphous Carbon Nitride Allotropic Heterojunction toward Efficient Solar Hydrogen Evolution. Solar Rrl, 2021, 5, .	3.1	12
6	<i>In situ</i> formation of polymer electrolytes using a dicationic imidazolium cross-linker for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2021, 9, 5796-5806.	5.2	16
7	Highly stable interface formation in onsite coagulation dual-salt gel electrolyte for lithium-metal batteries. Journal of Materials Chemistry A, 2021, 9, 5675-5684.	5.2	12
8	Free-standing polymer electrolyte for all-solid-state lithium batteries operated at room temperature. Journal of Power Sources, 2020, 449, 227518.	4.0	43
9	Crosslinked solidified gel electrolytes via in-situ polymerization featuring high ionic conductivity and stable lithium deposition for long-term durability lithium battery. Electrochimica Acta, 2020, 361, 137076.	2.6	6
10	On-site-coagulation gel polymer electrolytes with a high dielectric constant for lithium-ion batteries. Journal of Power Sources, 2020, 480, 228802.	4.0	16
11	Synthesis, thermal properties and rheological behaviors of novel Poly(ethylene glycol) segmented Poly(arylene ether)s. Polymer, 2020, 196, 122426.	1.8	3
12	Microscopic Revelation of Charge-Trapping Sites in Polymeric Carbon Nitrides for Enhanced Photocatalytic Activity by Correlating with Chemical and Electronic Structures. ACS Applied Materials & Interfaces, 2019, 11, 19087-19095.	4.0	22
13	High Li ⁺ transference gel interface between solid-oxide electrolyte and cathode for quasi-solid lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12244-12252.	5.2	35
14	Polymer electrolytes based on Poly(VdF-co-HFP)/ionic liquid/carbonate membranes for high-performance lithium-ion batteries. Polymer, 2019, 173, 110-118.	1.8	13
15	Minimization of Ion–Solvent Clusters in Gel Electrolytes Containing Graphene Oxide Quantum Dots for Lithiumâ€ l on Batteries. Small, 2018, 14, e1703571.	5.2	43
16	Self-Assembly and Hydrogelation of Coil–Sheet Poly(<scp>l</scp> -lysine)- <i>block</i> -poly(<scp>l</scp> -threonine) Block Copolypeptides. Macromolecules, 2018, 51, 8054-8063.	2.2	22
17	Diode-like gel polymer electrolytes for full-cell lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 17476-17481.	5.2	19
18	Alkyl-poly(<scp>l</scp> -threonine)/Cyclodextrin Supramolecular Hydrogels with Different Molecular Assemblies and Gel Properties. ACS Macro Letters, 2016, 5, 1201-1205.	2.3	26

Sheng-Shu Hou

#	Article	IF	CITATIONS
19	Structure and molecular dynamics of sodium dodecylsulfate micelles modified with hydrophilic short-chain imidazolium salts in aqueous solution. Journal of Colloid and Interface Science, 2016, 474, 78-87.	5.0	3
20	High Performance of Transferring Lithium Ion for Polyacrylonitrile-Interpenetrating Crosslinked Polyoxyethylene Network as Gel Polymer Electrolyte. ACS Applied Materials & Interfaces, 2014, 6, 3156-3162.	4.0	132
21	Effects of Organic Salts on Polymer–Surfactant Interactions: Roles of Bu4NBr and Pr4NBr in PVP–SDS Complexation. Macromolecules, 2014, 47, 6418-6429.	2.2	24
22	NMR Studies on Effects of Tetraalkylammonium Bromides on Micellization of Sodium Dodecylsulfate. Journal of Physical Chemistry B, 2013, 117, 12076-12085.	1.2	23
23	Gel Electrolyte Derived from Poly(ethylene glycol) Blending Poly(acrylonitrile) Applicable to Rollâ€toâ€Roll Assembly of Electric Double Layer Capacitors. Advanced Functional Materials, 2012, 22, 4677-4685.	7.8	147
24	Intermolecular association and supramolecular structures of PNVF–LiPFN and PVP–LiPFN complexes in the aqueous phase. Soft Matter, 2010, 6, 409-415.	1.2	24
25	Synthesis and characterization of poly(acrylonitrile)/montmorillonite nanocomposites from surfaceâ€initiated redox polymerization. Journal of Applied Polymer Science, 2010, 115, 416-423.	1.3	11
26	Interactions between Poly(<i>N</i> -vinylformamide) and Sodium Dodecyl Sulfate As Studied by Fluorescence and Two-Dimensional NOE NMR Spectroscopy. Macromolecules, 2008, 41, 1281-1288.	2.2	40
27	Preparation and optical properties of blue-emitting colloidal CdS nanocrystallines by the solvothermal process using poly (ethylene oxide) as the stabilizer. Colloid and Polymer Science, 2007, 285, 1343-1349.	1.0	9
28	Thermal and NMR characterization on trans-esterification-induced phase changes in blends of poly(ethylene-2,6-naphthalate) with poly(pentylene terephthalate). Polymer, 2005, 46, 7425-7435.	1.8	13
29	Solid polymer electrolytes I, preparation, characterization, and ionic conductivity of gelled polymer electrolytes based on novel crosslinked siloxane/poly(ethylene glycol) polymers. Journal of Polymer Science Part A, 2004, 42, 2051-2059.	2.5	13
30	An Investigation into PEO/Crosslinked-Silicone Semi-Interpenetrating Polymer Network Using1H Solid-State NMR Spectroscopy under Fast MAS. Macromolecular Rapid Communications, 2001, 22, 1386-1389.	2.0	15
31	Function and performance of silicone copolymers, 5. Syntheses and surface characterization of an acrylized silica monomer. Macromolecular Chemistry and Physics, 2000, 201, 1451-1457.	1.1	2
32	Function and performance of silicone copolymers, 3. Synthesis and properties of a novel siliconized acrylic monomer containing three reactive sites. Macromolecular Chemistry and Physics, 1999, 200, 2501-2507.	1.1	18