Said Agouram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7136206/publications.pdf

Version: 2024-02-01

74 papers

3,480 citations

218677
26
h-index

138484 58 g-index

74 all docs

74 docs citations

74 times ranked 6069 citing authors

#	Article	IF	CITATIONS
1	Nontemplate Synthesis of CH ₃ NH ₃ PbBr ₃ Perovskite Nanoparticles. Journal of the American Chemical Society, 2014, 136, 850-853.	13.7	1,128
2	The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Applied Catalysis B: Environmental, 2015, 174-175, 403-412.	20.2	333
3	Deep oxidation of volatile organic compounds using ordered cobalt oxides prepared by a nanocasting route. Applied Catalysis A: General, 2010, 386, 16-27.	4.3	164
4	Controlling the Phase Segregation in Mixed Halide Perovskites through Nanocrystal Size. ACS Energy Letters, 2019, 4, 54-62.	17.4	149
5	The Luminescence of CH ₃ NH ₃ PbBr ₃ Perovskite Nanoparticles Crests the Summit and Their Photostability under Wet Conditions is Enhanced. Small, 2016, 12, 5245-5250.	10.0	116
6	Total oxidation of VOCs on mesoporous iron oxide catalysts: Soft chemistry route versus hard template method. Chemical Engineering Journal, 2016, 290, 273-281.	12.7	109
7	Prussian Blue@MoS ₂ Layer Composites as Highly Efficient Cathodes for Sodium―and Potassium―on Batteries. Advanced Functional Materials, 2018, 28, 1706125.	14.9	88
8	Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route. Journal of Hazardous Materials, 2011, 187, 544-552.	12.4	80
9	Oxygen defects: The key parameter controlling the activity and selectivity of mesoporous copper-doped ceria for the total oxidation of naphthalene. Applied Catalysis B: Environmental, 2012, 127, 77-88.	20.2	70
10	Promoting the activity and selectivity of high surface area Ni–Ce–O mixed oxides by gold deposition for VOC catalytic combustion. Chemical Engineering Journal, 2011, 175, 271-278.	12.7	64
11	The catalytic performance of mesoporous cerium oxides prepared through a nanocasting route for the total oxidation of naphthalene. Applied Catalysis B: Environmental, 2010, 93, 395-405.	20.2	62
12	Unravelling the Photocatalytic Behavior of All-Inorganic Mixed Halide Perovskites: The Role of Surface Chemical States. ACS Applied Materials & Surfaces, 2020, 12, 914-924.	8.0	55
13	High activity mesoporous copper doped cerium oxide catalysts for the total oxidation of polyaromatic hydrocarbon pollutants. Chemical Communications, 2012, 48, 4704.	4.1	52
14	Au–ZnO Nanocomposite Films for Plasmonic Photocatalysis. Advanced Materials Interfaces, 2015, 2, 1500156.	3.7	51
15	Total oxidation of naphthalene using bulk manganese oxide catalysts. Applied Catalysis A: General, 2013, 450, 169-177.	4.3	49
16	The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane. Applied Catalysis B: Environmental, 2011, 101, 388-396.	20.2	47
17	NiO diluted in high surface area TiO 2 as an efficient catalyst for the oxidative dehydrogenation of ethane. Applied Catalysis A: General, 2017, 536, 18-26.	4.3	45
18	Cobalt ferrite nanoparticles under high pressure. Journal of Applied Physics, 2015, 118, .	2.5	44

#	Article	IF	CITATIONS
19	Determination of limiting factors of photovoltaic efficiency in quantum dot sensitized solar cells: Correlation between cell performance and structural properties. Journal of Applied Physics, 2010, 108, 064310.	2.5	42
20	Enhanced H2O2 production over Au-rich bimetallic Au–Pd nanoparticles on ordered mesoporous carbons. Catalysis Today, 2015, 248, 48-57.	4.4	40
21	Low temperature total oxidation of toluene by bimetallic Au–Ir catalysts. Catalysis Science and Technology, 2017, 7, 2886-2896.	4.1	39
22	Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane. Catalysis Science and Technology, 2016, 6, 3419-3429.	4.1	38
23	Study of the Partial Substitution of Pb by Sn in Cs–Pb–Sn–Br Nanocrystals Owing to Obtaining Stable Nanoparticles with Excellent Optical Properties. Journal of Physical Chemistry C, 2018, 122, 14222-14231.	3.1	38
24	Au-PVA Nanocomposite Negative Resist for One-Step Three-Dimensional e-Beam Lithography. Langmuir, 2010, 26, 2825-2830.	3.5	35
25	Highly dispersed encapsulated AuPd nanoparticles on ordered mesoporous carbons for the direct synthesis of H2O2 from molecular oxygen and hydrogen. Chemical Communications, 2012, 48, 5316.	4.1	32
26	Total oxidation of propane in vanadia-promoted platinum-alumina catalysts: Influence of the order of impregnation. Catalysis Today, 2015, 254, 12-20.	4.4	32
27	White light emission from lead-free mixed-cation doped Cs ₂ SnCl ₆ nanocrystals. Nanoscale, 2022, 14, 1468-1479.	5.6	29
28	Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method. Current Applied Physics, 2014, 14, 72-81.	2.4	24
29	Engineering Sr-doping for enabling long-term stable FAPb _{1â^'x} Sr _x I ₃ quantum dots with 100% photoluminescence quantum yield. Journal of Materials Chemistry C, 2021, 9, 1555-1566.	5.5	23
30	Effects of functionalized carbon nanotubes in peroxide crosslinking of diene elastomers. European Polymer Journal, 2009, 45, 1017-1023.	5.4	21
31	Total Oxidation of Naphthalene Using Mesoporous CeO2 Catalysts Synthesized by Nanocasting from Two Dimensional SBA-15 and Three Dimensional KIT-6 and MCM-48 Silica Templates. Catalysis Letters, 2010, 134, 110-117.	2.6	21
32	Controlled UVâ^'C Light-Induced Fusion of Thiol-Passivated Gold Nanoparticles. Langmuir, 2011, 27, 5234-5241.	3.5	20
33	Preferred Growth Direction by PbS Nanoplatelets Preserves Perovskite Infrared Light Harvesting for Stable, Reproducible, and Efficient Solar Cells. Advanced Energy Materials, 2020, 10, 2002422.	19.5	20
34	Oxidative dehydrogenation of ethane: A study over the structure and robustness of Ni–W–O catalysts. Fuel Processing Technology, 2014, 119, 105-113.	7.2	19
35	Microstructure and mechanical effects of spark plasma sintering in alumina monolithic ceramics. Scripta Materialia, 2013, 68, 603-606.	5.2	18
36	LEEIXS and XPS studies of reactive unbalanced magnetron sputtered chromium oxynitride thin films with air. Journal of Electron Spectroscopy and Related Phenomena, 2004, 134, 173-181.	1.7	17

#	Article	IF	Citations
37	Characterisation of reactive unbalanced magnetron sputtered chromium oxynitride thin films with air. Surface and Coatings Technology, 2004, 180-181, 164-168.	4.8	16
38	Optimizing Both Catalyst Preparation and Catalytic Behaviour for the Oxidative Dehydrogenation of Ethane of Ni–Sn–O Catalysts. Topics in Catalysis, 2016, 59, 1564-1572.	2.8	16
39	Optical properties and microstructure of 2.02-3.30 eV ZnCdO nanowires: Effect of thermal annealing. Applied Physics Letters, 2013, 102, .	3.3	15
40	The effects of thermal treatment on structural, morphological and optical properties of electrochemically deposited Bi2S3 thin films. Thin Solid Films, 2017, 626, 9-16.	1.8	13
41	Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures. Journal Physics D: Applied Physics, 2013, 46, 135301.	2.8	12
42	One-step growth of isolated CdO nanoparticles on r-sapphire substrates by using the spray pyrolysis methodology. RSC Advances, 2014, 4, 23137.	3.6	12
43	Self-assembled MgxZn _{1â^'x} O quantum dots (0 ≤ ≤) on different substrates using spray pyrolysis methodology. CrystEngComm, 2013, 15, 182-191.	2.6	11
44	VIS-UV ZnCdO/ZnO multiple quantum well nanowires and the quantification of Cd diffusion. Nanotechnology, 2014, 25, 255202.	2.6	11
45	Controlled building of CdSe@ZnS/Au and CdSe@ZnS/Au2S/Au nanohybrids. Nano Research, 2015, 8, 2271-2287.	10.4	11
46	Growth of Ag thin films on ZnO(0 0 0 â^1) investigated by AES and STM. Applied Surface Science, 2006, 253, 549-554.	6.1	10
47	Structural characterization of one-dimensional ZnO-based nanostructures grown by MOCVD. Physica Status Solidi (B): Basic Research, 2010, 247, 1683-1686.	1.5	10
48	Self-Assembled Zinc Oxide Quantum Dots Using Spray Pyrolysis Methodology. Crystal Growth and Design, 2011, 11, 3790-3801.	3.0	10
49	Corundum type indium oxide nanostructures: ambient pressure synthesis from InOOH, and optical and photocatalytic properties. RSC Advances, 2016, 6, 108393-108403.	3.6	10
50	High Optical Performance of Cyanâ€Emissive CsPbBr ₃ Perovskite Quantum Dots Embedded in Molecular Organogels. Advanced Optical Materials, 2021, 9, 2001786.	7.3	10
51	Optical properties of ZnMgO films grown by spray pyrolysis and their application to UV photodetection. Semiconductor Science and Technology, 2015, 30, 105026.	2.0	9
52	Ceramic/metal nanocomposites by lyophilization: Processing and HRTEM study. Materials Research Bulletin, 2012, 47, 285-289.	5.2	8
53	Structural and morphological characterizations of ZnO films grown on GaAs substrates by MOCVD. Applied Physics A: Materials Science and Processing, 2007, 88, 83-87.	2.3	7
54	Ceramic/metal nanocomposites by lyophilization: Spark plasma sintering and hardness. Ceramics International, 2014, 40, 4135-4140.	4.8	7

#	Article	IF	Citations
55	Spark plasma sintering of zirconia/nano-nickel composites. Mechanics and Industry, 2015, 16, 703.	1.3	7
56	Enhanced NiO Dispersion on a High Surface Area Pillared Heterostructure Covered by Niobium Leads to Optimal Behaviour in the Oxidative Dehydrogenation of Ethane. Chemistry - A European Journal, 2020, 26, 9371-9381.	3.3	7
57	Morphology and Band Structure of Orthorhombic PbS Nanoplatelets: An Indirect Band Gap Material. Chemistry of Materials, 2021, 33, 420-429.	6.7	7
58	Structural Metastability and Quantum Confinement in Zn1–xCoxO Nanoparticles. Nano Letters, 2016, 16, 5204-5212.	9.1	6
59	Self-assembled metal-oxide nanoparticles on GaAs: infrared absorption enabled by localized surface plasmons. Nanophotonics, 2021, 10, 2509-2518.	6.0	6
60	Synthesis of cubic ZnS microspheres exhibiting broad visible emission for bioimaging applications. Luminescence, 2016, 31, 544-550.	2.9	5
61	Structural and morphological characterization of the Cd-rich region in Cd1-xZnxO thin films grown by atmospheric pressure metal organic chemical vapour deposition. Thin Solid Films, 2019, 683, 128-134.	1.8	5
62	ZnO films grown by MOCVD on GaAs substrates: Effects of a Zn buffer deposition on interface, structural and morphological properties. Journal of Crystal Growth, 2009, 311, 2564-2571.	1.5	4
63	Growth and characterization of self-assembled Cd _{1â°'x} Mg _x O (0 ≤ ≤) nanoparticles on r-sapphire substrates. CrystEngComm, 2014, 16, 8969-8976.	2.6	4
64	Assessment of the out-plane and in-plane ordering of high quality ZnO nanorods by X-ray multiple diffraction. Thin Solid Films, 2013, 541, 107-112.	1.8	3
65	Towards solar cell emitters based on colloidal Si nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 156-161.	1.8	3
66	Study of the MOCVD growth of ZnO on GaAs substrates: Influence of the molar ratio of the precursors on structural and morphological properties. Superlattices and Microstructures, 2007, 42, 140-144.	3.1	2
67	Spray pyrolytic deposition of ZnO thin layers composed of low dimensional nanostructures. Physics Procedia, 2010, 8, 14-17.	1.2	2
68	SubstructuralÂProperties and Anisotropic Peak Broadening in Zn1â^'x Mn x Te Films Determined by a Combined Methodology Based on SEM, HRTEM, XRD, and HRXRD. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6645-6654.	2.2	2
69	Induced crystallographic changes in Cd1â^'xZnxO films grown on r-sapphire by AP-MOCVD: the effects of the Zn content when x â‰ぬ.5. CrystEngComm, 2020, 22, 74-84.	2.6	2
70	Crystal growth of ZnO micro and nanostructures by PVT on c-sapphire and amorphous quartz substrates. Physics Procedia, 2010, 8, 121-125.	1.2	1
71	Influence of the growing parameters on the size distribution of PbTe nanoparticles produced by laser ablation under inert gas atmosphere. Proceedings of SPIE, 2012, , .	0.8	1
72	Synthesis and Characterization of ZnO Nano and Micro Structures Grown by Low Temperature Spray Pyrolysis and Vapor Transport. Journal of Nanoscience and Nanotechnology, 2012, 12, 6792-6799.	0.9	1

#	Article	lF	CITATIONS
73	Enabling long-term stable FAPb1-xSrxl3 quantum dots with high optical performance: the effect of Sr2+ doping. , 0, , .		0
74	The role of surface chemical states on the photocatalytic behavior of all-inorganic mixed halide perovskite nanocrystals. , 0 , , .		0