Yujie Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7136119/publications.pdf

Version: 2024-02-01

		172207	64668
80	6,936	29	
papers	citations	h-index	

80	6,936	29		/9	
papers	citations	h-index		g-index	
				<u> </u>	
			l		
88	88	88		15765	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Activation of Dopamine D2 Receptor Suppresses Neuroinflammation Through αB-Crystalline by Inhibition of NF-κB Nuclear Translocation in Experimental ICH Mice Model. Stroke, 2015, 46, 2637-2646.	1.0	126
3	Endogenous hydrogen sulphide attenuates NLRP3 inflammasome-mediated neuroinflammation by suppressing the P2X7 receptor after intracerebral haemorrhage in rats. Journal of Neuroinflammation, 2017, 14, 163.	3.1	99
4	Norrin Protected Blood–Brain Barrier Via Frizzled-4/β-Catenin Pathway After Subarachnoid Hemorrhage in Rats. Stroke, 2015, 46, 529-536.	1.0	96
5	Intracerebral Hematoma Contributes to Hydrocephalus After Intraventricular Hemorrhage via Aggravating Iron Accumulation. Stroke, 2015, 46, 2902-2908.	1.0	80
6	P2X7 Receptor Antagonism Inhibits p38 Mitogen-Activated Protein Kinase Activation and Ameliorates Neuronal Apoptosis After Subarachnoid Hemorrhage in Rats. Critical Care Medicine, 2013, 41, e466-e474.	0.4	77
7	Delayed Hyperbaric Oxygen Therapy Promotes Neurogenesis Through Reactive Oxygen Species/Hypoxia-Inducible Factor- $11\pm \hat{l}^2$ -Catenin Pathway in Middle Cerebral Artery Occlusion Rats. Stroke, 2014, 45, 1807-1814.	1.0	75
8	P2X7 Receptor Suppression Preserves Blood-Brain Barrier through Inhibiting RhoA Activation after Experimental Intracerebral Hemorrhage in Rats. Scientific Reports, 2016, 6, 23286.	1.6	72
9	Macrophage-Inducible C-Type Lectin/Spleen Tyrosine Kinase Signaling Pathway Contributes to Neuroinflammation After Subarachnoid Hemorrhage in Rats. Stroke, 2015, 46, 2277-2286.	1.0	69
10	A Cannabinoid Receptor 2 Agonist Prevents Thrombin-Induced Blood–Brain Barrier Damage via the Inhibition of Microglial Activation and Matrix Metalloproteinase Expression in Rats. Translational Stroke Research, 2015, 6, 467-477.	2.3	66
11	MFGE8/Integrin \hat{I}^2 3 pathway alleviates apoptosis and inflammation in early brain injury after subarachnoid hemorrhage in rats. Experimental Neurology, 2015, 272, 120-127.	2.0	54
12	Venous system in acute brain injury: Mechanisms of pathophysiological change and function. Experimental Neurology, 2015, 272, 4-10.	2.0	51
13	Artesunate Protected Blood–Brain Barrier via Sphingosine 1 Phosphate Receptor 1/Phosphatidylinositol 3 Kinase Pathway After Subarachnoid Hemorrhage in Rats. Molecular Neurobiology, 2017, 54, 1213-1228.	1.9	50
14	Decorin alleviated chronic hydrocephalus via inhibiting TGF- \hat{l}^2 1/Smad/CTGF pathway after subarachnoid hemorrhage in rats. Brain Research, 2016, 1630, 241-253.	1.1	49
15	P2X7 Receptor-Associated Programmed Cell Death in the Pathophysiology of Hemorrhagic Stroke. Current Neuropharmacology, 2018, 16, 1282-1295.	1.4	46
16	The Potential Therapeutic Effects of Artesunate on Stroke and Other Central Nervous System Diseases. BioMed Research International, 2016, 2016, 1-16.	0.9	44
17	Effects of Atorvastatin on Surgical Treatments of Chronic Subdural Hematoma. World Neurosurgery, 2018, 117, e425-e429.	0.7	44
18	MST1 Suppression Reduces Early Brain Injury by Inhibiting the NF- <i>?º</i> Pathway after Subarachnoid Hemorrhage in Mice. Behavioural Neurology, 2018, 2018, 1-13.	1.1	44

#	Article	IF	CITATIONS
19	Recombinant Milk Fat Globule–EGF Factor-8 Reduces Oxidative Stress via Integrin β3/Nuclear Factor Erythroid 2–Related Factor 2/Heme Oxygenase Pathway in Subarachnoid Hemorrhage Rats. Stroke, 2014, 45, 3691-3697.	1.0	42
20	Taurine supplementation reduces neuroinflammation and protects against white matter injury after intracerebral hemorrhage in rats. Amino Acids, 2018, 50, 439-451.	1.2	39
21	Epothilone B Benefits Nigrostriatal Pathway Recovery by Promoting Microtubule Stabilization After Intracerebral Hemorrhage. Journal of the American Heart Association, 2018, 7, .	1.6	39
22	TRPV4 Blockade Preserves the Blood–Brain Barrier by Inhibiting Stress Fiber Formation in a Rat Model of Intracerebral Hemorrhage. Frontiers in Molecular Neuroscience, 2018, 11, 97.	1.4	37
23	Amantadine preserves dopamine level and attenuates depression-like behavior induced by traumatic brain injury in rats. Behavioural Brain Research, 2015, 279, 274-282.	1.2	36
24	Administration of a PTEN inhibitor BPV(pic) attenuates early brain injury via modulating AMPA receptor subunits after subarachnoid hemorrhage in rats. Neuroscience Letters, 2015, 588, 131-136.	1.0	35
25	Hemoglobin induced NO/cGMP suppression Deteriorate Microcirculation via Pericyte Phenotype Transformation after Subarachnoid Hemorrhage in Rats. Scientific Reports, 2016, 6, 22070.	1.6	35
26	Lithium treatment mitigates white matter injury after intracerebral hemorrhage through brain-derived neurotrophic factor signaling in mice. Translational Research, 2020, 217, 61-74.	2.2	35
27	Milk Fat Globule-Epidermal Growth Factor-8 Pretreatment Attenuates Apoptosis and Inflammation via the Integrin-Î ² 3 Pathway after Surgical Brain Injury in Rats. Frontiers in Neurology, 2018, 9, 96.	1.1	33
28	Mitochondria: Novel Mechanisms and Therapeutic Targets for Secondary Brain Injury After Intracerebral Hemorrhage. Frontiers in Aging Neuroscience, 2020, 12, 615451.	1.7	33
29	White Matter Injury and Recovery after Hypertensive Intracerebral Hemorrhage. BioMed Research International, 2017, 2017, 1-11.	0.9	32
30	Neuroprotective role of an N-acetyl serotonin derivative via activation of tropomyosin-related kinase receptor B after subarachnoid hemorrhage in a rat model. Neurobiology of Disease, 2015, 78, 126-133.	2.1	31
31	Cyclophilin a signaling induces pericyte-associated blood-brain barrier disruption after subarachnoid hemorrhage. Journal of Neuroinflammation, 2020, 17, 16.	3.1	31
32	Neural Vascular Mechanism for the Cerebral Blood Flow Autoregulation after Hemorrhagic Stroke. Neural Plasticity, 2017, 2017, 1-12.	1.0	29
33	The evolving roles of pericyte in early brain injury after subarachnoid hemorrhage. Brain Research, 2015, 1623, 110-122.	1.1	27
34	LSKL peptide alleviates subarachnoid fibrosis and hydrocephalus by inhibiting TSP1-mediated TGF-β1 signaling activity following subarachnoid hemorrhage in rats. Experimental and Therapeutic Medicine, 2016, 12, 2537-2543.	0.8	25
35	Repetitive Transcranial Magnetic Stimulation Promotes Neural Stem Cell Proliferation and Differentiation after Intracerebral Hemorrhage in Mice*. Cell Transplantation, 2019, 28, 568-584.	1.2	25
36	Protective effects of Ephedra sinica extract on blood–brain barrier integrity and neurological function correlate with complement C3 reduction after subarachnoid hemorrhage in rats. Neuroscience Letters, 2015, 609, 216-222.	1.0	24

#	Article	IF	Citations
37	Inhibition of Mitochondrial ROS by MitoQ Alleviates White Matter Injury and Improves Outcomes after Intracerebral Haemorrhage in Mice. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	1.9	23
38	Electromagnetic Fields for the Regulation of Neural Stem Cells. Stem Cells International, 2017, 2017, 1-16.	1.2	22
39	Progranulin Reduced Neuronal Cell Death by Activation of Sortilin 1 Signaling Pathways After Subarachnoid Hemorrhage in Rats. Critical Care Medicine, 2015, 43, e304-e311.	0.4	21
40	Cyclosporine A alleviated matrix metalloproteinase 9 associated blood-brain barrier disruption after subarachnoid hemorrhage in mice. Neuroscience Letters, 2017, 649, 7-13.	1.0	21
41	Stably maintained microtubules protect dopamine neurons and alleviate depression-like behavior after intracerebral hemorrhage. Scientific Reports, 2018, 8, 12647.	1.6	21
42	Computed tomography angiography-based analysis of high-risk intracerebral haemorrhage patients by employing a mathematical model. BMC Bioinformatics, 2019, 20, 193.	1.2	21
43	Modified behavioural tests to detect white matter injury- induced motor deficits after intracerebral haemorrhage in mice. Scientific Reports, 2019, 9, 16958.	1.6	20
44	Simvastatin Reduces Neutrophils Infiltration Into Brain Parenchyma After Intracerebral Hemorrhage via Regulating Peripheral Neutrophils Apoptosis. Frontiers in Neuroscience, 2018, 12, 977.	1.4	19
45	Scutellarin attenuates vasospasm through the Erk5-KLF2-eNOS pathway after subarachnoid hemorrhage in rats. Journal of Clinical Neuroscience, 2016, 34, 264-270.	0.8	18
46	Intraventricular administration of urokinase as a novel therapeutic approach for communicating hydrocephalus. Translational Research, 2017, 180, 77-90.e2.	2.2	17
47	Fluid metabolic pathways after subarachnoid hemorrhage. Journal of Neurochemistry, 2022, 160, 13-33.	2.1	15
48	The Effects of Intermittent Theta Burst Stimulation on Functional Brain Network Following Stroke: An Electroencephalography Study. Frontiers in Neuroscience, 2021, 15, 755709.	1.4	15
49	NLRP3 inflammasome-mediated choroid plexus hypersecretion contributes to hydrocephalus after intraventricular hemorrhage via phosphorylated NKCC1 channels. Journal of Neuroinflammation, 2022, 19, .	3.1	15
50	Gut Microbiome Contributes to Liver Fibrosis Impact on T Cell Receptor Immune Repertoire. Frontiers in Microbiology, 2020, 11, 571847.	1.5	14
51	MEC17â€induced αâ€tubulin acetylation restores mitochondrial transport function and alleviates axonal injury after intracerebral hemorrhage in mice. Journal of Neurochemistry, 2022, 160, 51-63.	2.1	14
52	Characteristics of a rat model of an open craniocerebral injury at simulated high altitude. NeuroReport, 2014, 25, 1272-1280.	0.6	13
53	Nexilin Regulates Oligodendrocyte Progenitor Cell Migration and Remyelination and Is Negatively Regulated by Protease-Activated Receptor 1/Ras-Proximate-1 Signaling Following Subarachnoid Hemorrhage. Frontiers in Neurology, 2018, 9, 282.	1.1	13
54	Iron Metabolism Disorders for Cognitive Dysfunction After Mild Traumatic Brain Injury. Frontiers in Neuroscience, 2021, 15, 587197.	1.4	12

#	Article	IF	CITATIONS
55	MiR-706 alleviates white matter injury via downregulating PKCα/MST1/NF-κB pathway after subarachnoid hemorrhage in mice. Experimental Neurology, 2021, 341, 113688.	2.0	12
56	A Dual Parameter Synchronous Monitoring System of Brain Edema Based on the Reflection and Transmission Characteristics of Two-Port Test Network. IEEE Access, 2019, 7, 50839-50848.	2.6	9
57	Developing the novel bioinformatics algorithms to systematically investigate the connections among survival time, key genes and proteins for Glioblastoma multiforme. BMC Bioinformatics, 2020, 21, 383.	1.2	9
58	Noninvasive real-time assessment of intracranial pressure after traumatic brain injury based on electromagnetic coupling phase sensing technology. BMC Neurology, 2021, 21, 26.	0.8	9
59	Ambroxol Upregulates Glucocerebrosidase Expression to Promote Neural Stem Cells Differentiation Into Neurons Through Wnt $\hat{\mathbb{N}}^2$ -Catenin Pathway After Ischemic Stroke. Frontiers in Molecular Neuroscience, 2020, 13, 596039.	1.4	9
60	Secondary White Matter Injury and Therapeutic Targets After Subarachnoid Hemorrhage. Frontiers in Neurology, 2021, 12, 659740.	1.1	9
61	Lipocalin-2-Mediated Insufficient Oligodendrocyte Progenitor Cell Remyelination for White Matter Injury After Subarachnoid Hemorrhage via SCL22A17 Receptor/Early Growth Response Protein 1 Signaling. Neuroscience Bulletin, 2022, 38, 1457-1475.	1.5	9
62	Blood-filled cerebrospinal fluid-enhanced pericyte microvasculature contraction in rat retina: A novel in vitro study of subarachnoid hemorrhage. Experimental and Therapeutic Medicine, 2016, 12, 2411-2416.	0.8	8
63	Transcriptional and Genomic Targets of Neural Stem Cells for Functional Recovery after Hemorrhagic Stroke. Stem Cells International, 2017, 2017, 1-8.	1.2	6
64	The T Cell Receptor Immune Repertoire Protects the Liver From Reconsitution. Frontiers in Immunology, 2020, 11, 584979.	2.2	6
65	Development of an Early Prediction Model for Subarachnoid Hemorrhage With Genetic and Signaling Pathway Analysis. Frontiers in Genetics, 2020, 11, 391.	1.1	6
66	PKGl $\hat{l}\pm$ Inhibits the Proliferation of Cerebral Arterial Smooth Muscle Cell Induced by Oxyhemoglobin After Subarachnoid Hemorrhage 1., 2011, 110, 167-171.		6
67	Pericyte: Potential Target for Hemorrhagic Stroke Prevention and Treatment. Current Drug Delivery, 2017, 14, 773-784.	0.8	6
68	A Clinical Research on Real-Time Monitoring of Cerebral Edema After Basal Ganglia Hemorrhage Based on Near-Field Coupling Phase Shift Technology. IEEE Access, 2019, 7, 123736-123745.	2.6	5
69	Early assessment of acute ischemic stroke in rabbits based on multi-parameter near-field coupling sensing. BioMedical Engineering OnLine, 2022, 21, 20.	1.3	4
70	Disturbed cerebral circulation and metabolism matters. Journal of Neurochemistry, 2022, 160, 10-12.	2.1	4
71	Sepsis-Exacerbated Brain Dysfunction After Intracerebral Hemorrhage. Frontiers in Cellular Neuroscience, 2021, 15, 819182.	1.8	3
72	Clinical Outcomes and Complications of Preoperative Embolization for Intracranial Giant Meningioma Tumorectomy: A Retrospective, Observational, Matched Cohort Study. Frontiers in Oncology, 2022, 12, 852327.	1.3	3

YUJIE CHEN

#	Article	IF	CITATIONS
73	Inhibiting Microglia-Derived NLRP3 Alleviates Subependymal Edema and Cognitive Dysfunction in Posthemorrhagic Hydrocephalus after Intracerebral Hemorrhage via AMPK/Beclin-1 Pathway. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-17.	1.9	3
74	Response to Letter Regarding Article, "Norrin Protected Blood–Brain Barrier via Frizzled-4∫β-Catenin Pathway After Subarachnoid Hemorrhage in Rats― Stroke, 2015, 46, e91.	1.0	2
75	Aggravated pulmonary injury after subarachnoid hemorrhage in PDGF-Bret/ret mice. Chinese Neurosurgical Journal, 2020, 6, 13.	0.3	2
76	Multimodal Monitoring Technologies for Pathophysiology and Management of Traumatic Brain Injury. Journal of Translational Critical Care Medicine, 2019, 1, 12-19.	0.0	2
77	Gelatinase-Mediated Impairment of Microvascular Beds in Cerebral Ischemia and Reperfusion Injury. Springer Series in Translational Stroke Research, 2018, , 1-14.	0.1	1
78	Impact and risk factors of sepsis on long-term outcomes after spontaneous intracerebral hemorrhage. Chinese Medical Journal, 2022, Publish Ahead of Print, .	0.9	1
79	Neurovascular Network as Future Therapeutic Targets. Springer Series in Translational Stroke Research, 2019, , 1-47.	0.1	0
80	Editorial: Pluripotent Cells for Stroke: From Mechanism to Therapeutic Strategies. Frontiers in Cellular Neuroscience, 2021, 15, 738240.	1.8	0