
Christopher W Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7135980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Incorporating environmental data in abundance-based algorithms for deriving phytoplankton size classes in the Atlantic Ocean. Remote Sensing of Environment, 2020, 240, 111689.	4.6	12
2	Advancing Marine Biogeochemical and Ecosystem Reanalyses and Forecasts as Tools for Monitoring and Managing Ecosystem Health. Frontiers in Marine Science, 2019, 6, .	1.2	62
3	Interannual and Decadal Variability in Tropical Pacific Chlorophyll from a Statistical Reconstruction: 1958–2008. Journal of Climate, 2017, 30, 7293-7315.	1.2	13
4	Modeling Hypoxia and Its Ecological Consequences in Chesapeake Bay. , 2017, , 119-147.		2
5	Assessing satellite sea surface salinity from ocean color radiometric measurements for coastal hydrodynamic model data assimilation. Journal of Applied Remote Sensing, 2016, 10, 036003.	0.6	5
6	The Roles of Emerging Technology and Modeling Techniques in Operational Ecological Forecasting at NOAA. Marine Technology Society Journal, 2015, 49, 193-203.	0.3	7
7	Strong sea surface cooling in the eastern equatorial Pacific and implications for Galápagos Penguin conservation. Geophysical Research Letters, 2015, 42, 6432-6437.	1.5	25
8	Modeling and forecasting the distribution of <i>Vibrio vulnificus</i> in Chesapeake Bay. Journal of Applied Microbiology, 2014, 117, 1312-1327.	1.4	33
9	Poleward expansion of the coccolithophore Emiliania huxleyi. Journal of Plankton Research, 2014, 36, 316-325.	0.8	112
10	Seasonality of oceanic primary production and its interannual variability from 1998 to 2007. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 90, 166-175.	0.6	12
11	Ecological forecasting in Chesapeake Bay: Using a mechanistic–empirical modeling approach. Journal of Marine Systems, 2013, 125, 113-125.	0.9	59
12	Coccolithophore surface distributions in the North Atlantic and their modulation of the air-sea flux of CO ₂ from 10 years of satellite Earth observation data. Biogeosciences, 2013, 10, 2699-2709.	1.3	45
13	Monitoring a Sentinel Species from Satellites: Detecting Emiliania huxleyi in 25 Years of AVHRR Imagery. , 2013, , 277-288.		1
14	An Advanced Data Assimilation System for the Chesapeake Bay: Performance Evaluation. Journal of Atmospheric and Oceanic Technology, 2012, 29, 1542-1557.	0.5	17
15	Establishing a global climatology of marine phytoplankton phenological characteristics. Journal of Geophysical Research, 2012, 117, .	3.3	55
16	Climate Forcing and Salinity Variability in Chesapeake Bay, USA. Estuaries and Coasts, 2012, 35, 237-261.	1.0	67
17	Towards operational forecasts of algal blooms and pathogens. , 2012, , 345-368.		4
18	Predicting potentially toxigenic Pseudo-nitzschia blooms in the Chesapeake Bay. Journal of Marine Systems, 2010, 83, 127-140.	0.9	81

2

#	Article	IF	CITATIONS
19	Modeling of HABs and eutrophication: Status, advances, challenges. Journal of Marine Systems, 2010, 83, 262-275.	0.9	171
20	Modeling Rappahannock River Basin Using SWAT - Pilot for Chesapeake Bay Watershed. Applied Engineering in Agriculture, 2010, 26, 795-805.	0.3	25
21	Distribution of calcifying and silicifying phytoplankton in relation to environmental and biogeochemical parameters during the late stages of the 2005 North East Atlantic Spring Bloom. Biogeosciences, 2009, 6, 2155-2179.	1.3	50
22	Predicting the Distribution of Vibrio spp. in the Chesapeake Bay: A Vibrio cholerae Case Study. EcoHealth, 2009, 6, 378-389.	0.9	51
23	Phenology of marine phytoplankton from satellite ocean color measurements. Geophysical Research Letters, 2009, 36, .	1.5	37
24	Decadal timeâ€series of SeaWiFS retrieved CDOM absorption and estimated CO ₂ photoproduction on the continental shelf of the eastern United States. Geophysical Research Letters, 2009, 36, .	1.5	17
25	Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response. Marine Ecology - Progress Series, 2009, 388, 13-25.	0.9	227
26	Environmental signatures associated with cholera epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17676-17681.	3.3	255
27	Predicting the distribution of the scyphomedusa Chrysaora quinquecirrha in Chesapeake Bay. Marine Ecology - Progress Series, 2007, 329, 99-113.	0.9	88
28	An Introduction to Satellite Sensors, Observations and Techniques. , 2007, , 21-50.		0
29	The effect of primary productivity and seasonality on the distribution of deep-sea benthic foraminifera in the North Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 28-47.	0.6	116
30	Pelagic functional group modeling: Progress, challenges and prospects. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 459-512.	0.6	200
31	Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy. Journal of Plankton Research, 2004, 26, 191-212.	0.8	162
32	The influence of tropical instability waves on phytoplankton blooms in the wake of the Marquesas Islands during 1998 and on the currents observed during the drift of the Kon-Tiki in 1947. Geophysical Research Letters, 2004, 31, .	1.5	28
33	Satellites Reveal the Influence of Equatorial Currents and Tropical Instability Waves on the Drift of the Kon-Tiki in the Pacific. Oceanography, 2004, 17, 166-175.	0.5	2
34	Analysis of satellite imagery forEmiliania huxleyiblooms in the Bering Sea before 1997. Geophysical Research Letters, 2003, 30, .	1.5	56
35	Satellite remote sensing observations and aerial photography of storm-induced neritic carbonate transport from shallow carbonate platforms. International Journal of Remote Sensing, 2002, 23, 2853-2868.	1.3	17
36	Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Global Biogeochemical Cycles, 2002, 16, 47-1-47-20.	1.9	234

CHRISTOPHER W BROWN

#	Article	IF	CITATIONS
37	Forecasting system predicts presence of sea nettles in Chesapeake Bay. Eos, 2002, 83, 321.	0.1	14
38	Geostationary satellites reveal motions of ocean surface fronts. Journal of Marine Systems, 2002, 37, 3-15.	0.9	23
39	Detecting Trichodesmium blooms in SeaWiFS imagery. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 49, 107-121.	0.6	148
40	Estimating oceanic chlorophyll concentrations with neural networks. International Journal of Remote Sensing, 1999, 20, 189-194.	1.3	79
41	The 'CORSAGE' programme: Continuous orbital remote sensing of archipelagic geochemical effects. International Journal of Remote Sensing, 1997, 18, 305-321.	1.3	3
42	Remote sensing of coccolithophore blooms in the Western South atlantic ocean. Remote Sensing of Environment, 1997, 60, 83-91.	4.6	54
43	Impact of chromophoric dissolved organic matter on UV inhibition of primary productivity in the sea. Marine Ecology - Progress Series, 1996, 140, 207-216.	0.9	109
44	Predicting phytoplankton composition from space—Using the ratio of euphotic depth to mixed-layer depth: An evaluation. Remote Sensing of Environment, 1995, 53, 172-176.	4.6	12
45	Distribution pattern of coccolithophorid blooms in the western North Atlantic Ocean. Continental Shelf Research, 1994, 14, 175-197.	0.9	56
46	Coccolithophorid blooms in the global ocean. Journal of Geophysical Research, 1994, 99, 7467.	3.3	415
47	Blooms of Emiliania huxleyi (Prymnesiophyceae) in surface waters of the Nova Scotian Shelf and the Grand Bank. Journal of Plankton Research, 1993, 15, 1429-1438.	0.8	29
48	A model system approach to biological climate forcing. The example of Emiliania huxleyi. Global and Planetary Change, 1993, 8, 27-46.	1.6	302
49	The Significance of the South Atlantic Equatorial Countercurrent to the Ecology of the Green Turtle Breeding Population of Ascension Island. Journal of Herpetology, 1990, 24, 81.	0.2	10
50	Relationship between the distribution pattern of right whales, Eubalaena glacialis, and satellite-derived sea surface thermal structure in the Great South Channel. Continental Shelf Research, 1989, 9, 247-260.	0.9	31