Josefa MarÃ-a Clemente-Jiménez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7135870/publications.pdf

Version: 2024-02-01

50 papers 1,236 citations

471061 17 h-index 377514 34 g-index

52 all docs 52 docs citations

52 times ranked

1224 citing authors

#	Article	IF	CITATIONS
1	Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiology, 2004, 21, 149-155.	2.1	199
2	Influence of sequential yeast mixtures on wine fermentation. International Journal of Food Microbiology, 2005, 98, 301-308.	2.1	132
3	Natural Occurrence and Industrial Applications of <scp>dâ€</scp> Amino Acids: An Overview. Chemistry and Biodiversity, 2010, 7, 1531-1548.	1.0	124
4	Identification of yeast species from orange fruit and juice by RFLP and sequence analysis of the 5.8S rRNA gene and the two internal transcribed spacers. FEMS Yeast Research, 2003, 3, 3-9.	1.1	99
5	Contribution of different natural yeasts to the aroma of two alcoholic beverages. World Journal of Microbiology and Biotechnology, 2003, 19, 297-304.	1.7	58
6	Optically Pure & Department of the Amp; Amplication of the Amp; Amplication of the Amp; Amplication of the Amp; Amplication of the Amplication of	0.4	40
7	Complete Conversion of D,L-5-Monosubstituted Hydantoins with a Low Velocity of Chemical Racemization into D-Amino Acids Using Whole Cells of Recombinant Escherichia coli. Biotechnology Progress, 2002, 18, 1201-1206.	1.3	39
8	Carbamoylases: characteristics and applications in biotechnological processes. Applied Microbiology and Biotechnology, 2010, 85, 441-458.	1.7	34
9	Overexpression and characterization of hydantoin racemase from Agrobacterium tumefaciens C58. Biochemical and Biophysical Research Communications, 2003, 303, 541-547.	1.0	33
10	Recombinant Polycistronic Structure of Hydantoinase Process Genes in Escherichia coli for the Production of Optically Pure d-Amino Acids. Applied and Environmental Microbiology, 2007, 73, 1525-1531.	1.4	30
11	Molecular Cloning, Purification, and Biochemical Characterization of Hydantoin Racemase from the Legume Symbiont Sinorhizobium meliloti CECT 4114. Applied and Environmental Microbiology, 2004, 70, 625-630.	1.4	29
12	Structure of dihydropyrimidinase from Sinorhizobium meliloti CECT4114: New features in an amidohydrolase family member. Journal of Structural Biology, 2010, 169, 200-208.	1.3	28
13	Biochemical characterization of a novel hydantoin racemase from Agrobacterium tumefaciens C58. Biochimie, 2004, 86, 77-81.	1.3	27
14	Crystallographic and Thermodynamic Analysis of the Binding of S-Octylglutathione to the Tyr 7 to Phe Mutant of Glutathione S-Transferase from Schistosoma japonicum,. Biochemistry, 2005, 44, 1174-1183.	1.2	24
15	Mutational and Structural Analysis of I - N -Carbamoylase Reveals New Insights into a Peptidase M20/M25/M40 Family Member. Journal of Bacteriology, 2012, 194, 5759-5768.	1.0	23
16	Potential Application of <i> N </i> - Carbamoyl- \hat{l}^2 -Alanine Amidohydrolase from <i> Agrobacterium tumefaciens </i> > C58 for \hat{l}^2 -Amino Acid Production. Applied and Environmental Microbiology, 2009, 75, 514-520.	1.4	21
17	Molecular Cloning and Biochemical Characterization of <i>L</i> -N-Carbamoylase from <i>Sinorhizobium meliloti</i> CECT4114. Journal of Molecular Microbiology and Biotechnology, 2005, 9, 16-25.	1.0	19
18	The family $52 \hat{l}^2$ -xylosidase from Geobacillus stearothermophilus is a dimer: Structural and biophysical characterization of a glycoside hydrolase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 1924-1934.	1.1	17

#	Article	IF	Citations
19	Enzymatic dynamic kinetic resolution of racemic N-formyl- and N-carbamoyl-amino acids using immobilized l-N-carbamoylase and N-succinyl-amino acid racemase. Applied Microbiology and Biotechnology, 2015, 99, 283-291.	1.7	17
20	Biochemical and Mutational Studies of the Bacillus cereus CECT 5050T Formamidase Support the Existence of a C-E-E-K Tetrad in Several Members of the Nitrilase Superfamily. Applied and Environmental Microbiology, 2011, 77, 5761-5769.	1.4	16
21	Amidohydrolase Process: Expanding the use of l-N-carbamoylase/N-succinyl-amino acid racemase tandem for the production of different optically pure l-amino acids. Process Biochemistry, 2014, 49, 1281-1287.	1.8	14
22	Immobilization of a multiâ€enzyme system for Lâ€amino acids production. Journal of Chemical Technology and Biotechnology, 2016, 91, 1972-1981.	1.6	14
23	Thermodynamic andÂmutational studies ofÂl-N-carbamoylase from SinorhizobiumÂmeliloti CECT 4114 catalytic centre. Biochimie, 2006, 88, 837-847.	1.3	13
24	Metal-triggered changes in the stability and secondary structure of a tetrameric dihydropyrimidinase: A biophysical characterization. Biophysical Chemistry, 2009, 139, 42-52.	1.5	13
25	Rational re-design of the "double-racemase hydantoinase process―for optically pure production of natural and non-natural l-amino acids. Biochemical Engineering Journal, 2015, 101, 68-76.	1.8	13
26	Racemization study on different N-acetylamino acids by a recombinant N-succinylamino acid racemase from Geobacillus kaustophilus CECT4264. Process Biochemistry, 2009, 44, 835-841.	1.8	12
27	Binding studies of hydantoin racemase from Sinorhizobium meliloti by calorimetric and fluorescence analysis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 292-298.	1.1	11
28	Site-directed mutagenesis indicates an important role of cysteines 76 and 181 in the catalysis of hydantoin racemase from Sinorhizobium meliloti. Protein Science, 2006, 15, 2729-2738.	3.1	11
29	Crystallization and preliminary crystallographic studies of the recombinant dihydropyrimidinase fromSinorhizobium melilotiCECT4114. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 1223-1226.	0.7	10
30	Structure and conformational stability of a tetrameric thermostable < i>Na \in succinylamino acid racemase. Biopolymers, 2009, 91, 757-772.	1.2	10
31	Evaluation of substrate promiscuity of an <scp>L</scp> â€earbamoyl amino acid amidohydrolase from <i>Geobacillus stearothermophilus </i> CECT43. Biotechnology Progress, 2010, 26, 954-959.	1.3	10
32	Catalytic analysis of a recombinant D-hydantoinase from Agrobacterium tumefaciens. Biotechnology Letters, 2003, 25, 1067-1073.	1.1	9
33	Thermodynamics of glutathione binding to the tyrosine 7 to phenylalanine mutant of glutathione S-transferase from Schistosoma japonicum. International Journal of Biological Macromolecules, 2003, 32, 77-82.	3.6	8
34	New biocatalytic route for the production of enantioenriched \hat{l}^2 -alanine derivatives starting from 5-and 6-monosubstituted dihydrouracils. Process Biochemistry, 2012, 47, 2090-2096.	1.8	8
35	Biochemical and mutational studies of allantoinase from Bacillus licheniformis CECT 20T. Biochimie, 2014, 99, 178-188.	1.3	8
36	l-Amino Acid Production by a Immobilized Double-Racemase Hydantoinase Process: Improvement and Comparison with a Free Protein System. Catalysts, 2017, 7, 192.	1.6	7

#	Article	IF	Citations
37	A monomer form of the glutathione S-transferase Y7F mutant from Schistosoma japonicum at acidic pH. Biochemical and Biophysical Research Communications, 2004, 314, 6-10.	1.0	6
38	Enzymatic activity assay of d-hydantoinase by isothermal titration calorimetry. Determination of the thermodynamic activation parameters for the hydrolysis of several substrates. Journal of Proteomics, 2006, 67, 57-66.	2.4	6
39	N-Carbamoyl- \hat{l}^2 -alanine amidohydrolase from Agrobacterium tumefaciens C58: A promiscuous enzyme for the production of amino acids. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3277-3282.	1.2	6
40	Stability and binding of the phosphorylated species of the N-terminal domain of enzyme I and the histidine phosphocarrier protein from the Streptomyces coelicolor phosphoenolpyruvate:sugar phosphotransferase system. Archives of Biochemistry and Biophysics, 2012, 526, 44-53.	1.4	6
41	Characterization of Cross-Linked Enzyme Aggregates of the Y509E Mutant of a Glycoside Hydrolase Family 52 β-xylosidase from G. stearothermophilus. Molecules, 2021, 26, 451.	1.7	6
42	Screening of autolytic yeast strains for production of l-amino acids. Enzyme and Microbial Technology, 2006, 40, 46-50.	1.6	5
43	Crystallization and preliminary crystallographic studies of an active-site mutant hydantoin racemase from $\langle i \rangle$ Sinorhizobium meliloti $\langle i \rangle$ CECT4114. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 50-53.	0.7	5
44	Inhibitory effect of different product analogues on \hat{l}^2 -alanine synthase: A thermodynamic and fluorescence analysis. Journal of Chemical Thermodynamics, 2009, 41, 212-220.	1.0	5
45	Crystallization and preliminary crystallographic studies of the recombinantL-N-carbamoylase fromGeobacillus stearothermophilusCECT43. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1135-1138.	0.7	4
46	Engineering Cyclic Amidases for Non-natural Amino Acid Synthesis. Methods in Molecular Biology, 2012, 794, 87-104.	0.4	3
47	Biochemical and Mutational Characterization of N-Succinyl-Amino Acid Racemase from Geobacillus stearothermophilus CECT49. Molecular Biotechnology, 2015, 57, 454-465.	1.3	2
48	Hydantoin Racemase: The Key Enzyme for the Production of Optically Purel±-Amino Acids., 0,, 173-193.		1
49	Optimisation of Two Recombinant Whole Cell Systems for the Production of Optically Pure D-Amino Acids. , 0, , 246-250.		0
50	Multisubstrate conversion to optically pure L-amino acids by a cascade chemoenzymatic process: Amidohydrolase process.cascatnote. Journal of Biotechnology, 2010, 150, 121-122.	1.9	0