
Pedro LÃ³pez MartÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7135822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomistic analysis of the evolution of boron activation during annealing in crystalline and preamorphized silicon. Journal of Applied Physics, 2005, 97, 103520.	1.1	34
2	Front-end process modeling in silicon. European Physical Journal B, 2009, 72, 323-359.	0.6	32
3	Physical insight into boron activation and redistribution during annealing after low-temperature solid phase epitaxial regrowth. Applied Physics Letters, 2006, 88, 191917.	1.5	22
4	Improved atomistic damage generation model for binary collision simulations. Journal of Applied Physics, 2009, 105, 083530.	1.1	22
5	Atomistic modeling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation. Computational Materials Science, 2005, 33, 92-105.	1.4	21
6	Molecular dynamics simulations of damage production by thermal spikes in Ge. Journal of Applied Physics, 2012, 111, 033519.	1.1	21
7	Recrystallization of atomically balanced amorphous pockets in Si: A source of point defects. Physical Review B, 2007, 76, .	1.1	18
8	Kinetic Monte Carlo simulations for transient thermal fields: Computational methodology and application to the submicrosecond laser processes in implanted silicon. Physical Review E, 2012, 86, 036705.	0.8	18
9	Modeling of defects, dopant diffusion and clustering in silicon. Journal of Computational Electronics, 2014, 13, 40-58.	1.3	18
10	Role of silicon interstitials in boron cluster dissolution. Applied Physics Letters, 2005, 86, 031908.	1.5	16
11	Molecular dynamics characterization of as-implanted damage in silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 372-375.	1.7	15
12	Atomistic analysis of the annealing behavior of amorphous regions in silicon. Journal of Applied Physics, 2007, 101, 093518.	1.1	14
13	Kinetic Monte Carlo simulations of boron activation in implanted Si under laser thermal annealing. Applied Physics Express, 2014, 7, 021301.	1.1	14
14	Structural transformations from point to extended defects in silicon: A molecular dynamics study. Physical Review B, 2008, 78, .	1.1	13
15	Insights on the atomistic origin of X and W photoluminescence lines in <i>c</i> -Si from <i>ab initio</i> simulations. Journal Physics D: Applied Physics, 2016, 49, 075109.	1.3	10
16	Physical insight into ultra-shallow junction formation through atomistic modeling. Nuclear Instruments & Methods in Physics Research B, 2006, 253, 41-45.	0.6	9
17	Molecular dynamics simulation of the regrowth of nanometric multigate Si devices. Journal of Applied Physics, 2012, 111, 034302.	1.1	9
18	Atomistic simulations in Si processing: Bridging the gap between atoms and experiments. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 72-80.	1.7	8

Pedro LÃ³pez MartÃN

#	Article	IF	CITATIONS
19	Atomistic modeling of impurity ion implantation in ultra-thin-body Si devices. , 2008, , .		8
20	Atomistic modeling of defect evolution in Si for amorphizing and subamorphizing implants. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 114-115, 82-87.	1.7	7
21	Evolution of boron-interstitial clusters in preamorphized silicon without the contribution of end-of-range defects. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 154-155, 247-251.	1.7	7
22	Atomistic process modeling based on Kinetic Monte Carlo and Molecular Dynamics for optimization of advanced devices. , 2009, , .		7
23	Molecular dynamics simulation of the early stages of self-interstitial clustering in silicon. Materials Science in Semiconductor Processing, 2016, 42, 235-238.	1.9	7
24	W and X Photoluminescence Centers in Crystalline Si: Chasing Candidates at Atomic Level Through Multiscale Simulations. Journal of Electronic Materials, 2018, 47, 5045-5049.	1.0	7
25	Atomistic modeling of dopant implantation, diffusion, and activation. Journal of Vacuum Science & Technology B, 2006, 24, 2432.	1.3	6
26	Molecular dynamics study of amorphous pocket formation in Si at low energies and its application to improve binary collision models. Nuclear Instruments & Methods in Physics Research B, 2007, 255, 110-113.	0.6	6
27	Ultrafast Generation of Unconventional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo stretchy="false">{<mml:mn>001</mml:mn><mml:mo stretchy="false">}</mml:mo </mml:mo </mml:mrow>Loops in Si. Physical Review Letters, 2017, 119,</mml:math 	2.9	6
28	A novel technique for the structural and energetic characterization of lattice defects in the molecular dynamics framework. Computational Materials Science, 2005, 33, 112-117.	1.4	5
29	Molecular dynamics study of damage generation mechanisms in silicon at the low energy regime. , 2007, , .		5
30	Improved physical models for advanced silicon device processing. Materials Science in Semiconductor Processing, 2017, 62, 62-79.	1.9	5
31	The role of silicon interstitials in the deactivation and reactivation of high concentration boron profiles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 114-115, 193-197.	1.7	4
32	Amorphous layer depth dependence on implant parameters during Si self-implantation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 379-382.	1.7	4
33	{001} loops in silicon unraveled. Acta Materialia, 2019, 166, 192-201.	3.8	4
34	On the anomalous generation of {0 0 1} loops during laser annealing of ion-implanted silicon. Nuclear Instruments & Methods in Physics Research B, 2019, 458, 179-183.	0.6	4
35	Generation of amorphous Si structurally compatible with experimental samples through the quenching process: A systematic molecular dynamics simulation study. Journal of Non-Crystalline Solids, 2019, 503-504, 20-27.	1.5	4
36	Evolution of fluorine and boron profiles during annealing in crystalline Si. Journal of Vacuum Science & Technology B, 2008, 26, 377.	1.3	3

Pedro LÃ³pez MartÃN

1

#	Article	IF	CITATIONS
37	Simulation of p-n junctions: Present and future challenges for technologies beyond 32 nm. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C1A1-C1A6.	0.6	3
38	A detailed approach for the classification and statistical analysis of irradiation induced defects. Nuclear Instruments & Methods in Physics Research B, 2015, 352, 156-159.	0.6	3
39	Atomistic simulations of acceptor removal in p-type Si irradiated with neutrons. Nuclear Instruments & Methods in Physics Research B, 2022, 512, 42-48.	0.6	3
40	Atomistic Analysis of the Role of Silicon Interstitials in Boron Cluster Dissolution. Materials Research Society Symposia Proceedings, 2004, 810, 334.	0.1	2
41	Atomistic modeling of ion beam induced amorphization in silicon. Nuclear Instruments & Methods in Physics Research B, 2005, 241, 501-505.	0.6	2
42	An in situ transmission electron microscope study of the anomalous annealing of spatially isolated disordered zones in silicon. Journal of Physics: Conference Series, 2006, 26, 284-287.	0.3	2
43	Multiscale modeling of radiation damage and annealing in Si. Nuclear Instruments & Methods in Physics Research B, 2007, 255, 95-100.	0.6	2
44	Molecular implants and cold implants: Two new strategies for junction formation of future Si devices. , 2011, , .		2
45	I <inf>ON</inf> Degradation in Si Devices in Harsh Radiation Environments: Modeling of Damage-Dopant Interactions. , 2018, , .		2
46	Atomistic analysis of annealing behavior of amorphous regions. , 0, , .		1
47	Atomistic Simulation of Damage Accumulation during Shallow B and As Implant into Si. , 2007, , .		1
48	Atomistic modeling of FnVm complexes in pre-amorphized Si. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 154-155, 207-210.	1.7	1
49	Physics Mechanisms Involved in the Formation and Recrystallization of Amorphous Regions in Si through Ion Irradiation. Solid State Phenomena, 2008, 139, 71-76.	0.3	1
50	Si interstitial contribution of F+ implants in crystalline Si. Journal of Applied Physics, 2008, 103, .	1.1	1
51	Atomistic analysis of B clustering and mobility degradation in highly Bâ€doped junctions. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2010, 23, 266-284.	1.2	1
52	Carrier mobility degradation in highly B-doped junctions. , 2009, , .		1
53	Modeling of advanced ion implantation technologies in semiconductors. , 2011, , .		1

54 Simulation study of ion implanted defects associated to luminescence centers in silicon. , 2011, , .

Pedro LÃ³pez MartÃn

#	Article	IF	CITATIONS
55	Modeling of defect generation and dissolution in ion implanted semiconductors. , 2011, , .		1
56	Atomistic modeling of ion implantation technologies in silicon. Nuclear Instruments & Methods in Physics Research B, 2015, 352, 148-151.	0.6	1
57	Identification of Extended Defect Atomic Configurations in Silicon Through Transmission Electron Microscopy Image Simulation. Journal of Electronic Materials, 2018, 47, 4955-4958.	1.0	1
58	Extending defect models for Si processing: The role of energy barriers for defect transformation, entropy and coalescence mechanism. Nuclear Instruments & Methods in Physics Research B, 2022, 512, 54-59.	0.6	1
59	Atomistic Modeling of Ion Beam Induced Defects in Si: From Point Defects to Continuous Amorphous Layers Materials Research Society Symposia Proceedings, 2004, 810, 422.	0.1	0
60	Morphology of as-implanted damage in silicon: a molecular dynamics study. , 0, , .		0
61	Boron redistribution in pre-amorphized Si during thermal annealing. , O, , .		О
62	Simulation analysis of boron pocket deactivation in NMOS transistors with SPER junctions. , 0, , .		0
63	Boron Electrical Activation in SOI Compared to Bulk Si Substrates. , 2007, , .		0
64	Physics based models for process optimization. , 2007, , .		0
65	Molecular Dynamics Simulation of Octadecaborane Implantation into Silicon. , 2007, , .		ο
66	F+ implants in crystalline Si: the Si interstitial contribution. Materials Research Society Symposia Proceedings, 2008, 1070, 1.	0.1	0
67	Atomistic Simulation Techniques in Front-End Processing. Materials Research Society Symposia Proceedings, 2008, 1070, 1.	0.1	0
68	Atomistic Modeling of Junction Formation: Tools for Physics Understanding and Process Optimization. ECS Transactions, 2009, 25, 411-418.	0.3	0
69	Atomistic simulations of the effect of implant parameters on Si damage. , 2009, , .		Ο
70	Influence of Si surface on damage generation and recombination. , 2009, , .		0
71	Atomistic process simulation for future generation nanodevices. , 2011, , .		0
79	Kinetic Monte Carlo simulation of dopant-defect systems under submicrosecond laser thermal		0

72 processes., 2012,,.

Pedro LÃ³pez MartÃN

#	Article	IF	CITATIONS
73	Temperature effect on damage generation mechanisms during ion implantation in Si. A classical molecular dynamics study. AIP Conference Proceedings, 2012, , .	0.3	0
74	Dopant dynamics and defects evolution in implanted silicon under laser irradiations: A coupled continuum and kinetic Monte Carlo approach. , 2013, , .		0
75	Atomistic study of the anisotropic interaction between extended and point defects in crystalline silicon and its influence on Si self-interstitial diffusion. , 2016, , .		0
76	Characterization of amorphous Si generated through classical molecular dynamics simulations. , 2017, , .		0
77	Evaluation of energy barriers for topological transitions of Si self-interstitial clusters by classical molecular dynamics and the kinetic activation-relaxation technique. , 2017, , .		0
78	Modeling SiGe Through Classical Molecular Dynamics Simulations: Chasing an Appropriate Empirical Potential. , 2018, , .		0
79	Atomistic modeling of laser-related phenomena. , 2021, , 79-136.		0
80	Molecular Dynamics Modeling of Octadecaborane Implantation into Si. , 2007, , 17-20.		0