
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7135668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal–organic framework materials as catalysts. Chemical Society Reviews, 2009, 38, 1450.	18.7	7,228
2	Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 2012, 112, 1105-1125.	23.0	6,221
3	Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nature Chemistry, 2012, 4, 310-316.	6.6	1,857
4	2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. Journal of the American Chemical Society, 2015, 137, 7843-7850.	6.6	1,818
5	De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2010, 2, 944-948.	6.6	1,535
6	Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?. Journal of the American Chemical Society, 2012, 134, 15016-15021.	6.6	1,497
7	Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 2016, 1, .	23.3	1,490
8	A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications, 2013, 49, 9449.	2.2	1,340
9	Rational Design, Synthesis, Purification, and Activation of Metalâ^'Organic Framework Materials. Accounts of Chemical Research, 2010, 43, 1166-1175.	7.6	1,259
10	Large-scale screening of hypothetical metal–organic frameworks. Nature Chemistry, 2012, 4, 83-89.	6.6	1,098
11	Methane Storage in Metal–Organic Frameworks: Current Records, Surprise Findings, and Challenges. Journal of the American Chemical Society, 2013, 135, 11887-11894.	6.6	841
12	Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 10294-10297.	6.6	821
13	Destruction of chemical warfare agents using metal–organic frameworks. Nature Materials, 2015, 14, 512-516.	13.3	790
14	Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chemical Society Reviews, 2014, 43, 5896-5912.	18.7	721
15	Metal–organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews, 2018, 358, 92-107.	9.5	719
16	Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chemical Society Reviews, 2017, 46, 3357-3385.	18.7	707
17	Light-Harvesting Metal–Organic Frameworks (MOFs): Efficient Strut-to-Strut Energy Transfer in Bodipy and Porphyrin-Based MOFs. Journal of the American Chemical Society, 2011, 133, 15858-15861.	6.6	702
18	Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications. Accounts of Chemical Research, 2017, 50, 805-813.	7.6	644

#	Article	IF	CITATIONS
19	Fe-Porphyrin-Based Metal–Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO ₂ . ACS Catalysis, 2015, 5, 6302-6309.	5.5	639
20	A Catalytically Active, Permanently Microporous MOF with Metalloporphyrin Struts. Journal of the American Chemical Society, 2009, 131, 4204-4205.	6.6	526
21	Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals. Chemistry of Materials, 2014, 26, 6185-6192.	3.2	524
22	Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 26-39.	3.2	518
23	Light-Harvesting and Ultrafast Energy Migration in Porphyrin-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 862-869.	6.6	510
24	Supercritical Processing as a Route to High Internal Surface Areas and Permanent Microporosity in Metalâ^'Organic Framework Materials. Journal of the American Chemical Society, 2009, 131, 458-460.	6.6	474
25	Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO ₂ Adsorption Studies. Journal of the American Chemical Society, 2013, 135, 16801-16804.	6.6	473
26	A Hafnium-Based Metal–Organic Framework as an Efficient and Multifunctional Catalyst for Facile CO ₂ Fixation and Regioselective and Enantioretentive Epoxide Activation. Journal of the American Chemical Society, 2014, 136, 15861-15864.	6.6	470
27	Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368, 297-303.	6.0	429
28	Active-Site-Accessible, Porphyrinic Metalâ^'Organic Framework Materials. Journal of the American Chemical Society, 2011, 133, 5652-5655.	6.6	415
29	Metal–organic framework materials for light-harvesting and energy transfer. Chemical Communications, 2015, 51, 3501-3510.	2.2	409
30	Metal–Organic Frameworks against Toxic Chemicals. Chemical Reviews, 2020, 120, 8130-8160.	23.0	406
31	High Propene/Propane Selectivity in Isostructural Metal–Organic Frameworks with High Densities of Open Metal Sites. Angewandte Chemie - International Edition, 2012, 51, 1857-1860.	7.2	392
32	Identifying the Recognition Site for Selective Trapping of ⁹⁹ TcO ₄ [–] in a Hydrolytically Stable and Radiation Resistant Cationic Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 14873-14876.	6.6	386
33	Coordination-Chemistry Control of Proton Conductivity in the Iconic Metal–Organic Framework Material HKUST-1. Journal of the American Chemical Society, 2012, 134, 51-54.	6.6	382
34	Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification. Journal of Materials Chemistry, 2009, 19, 2131.	6.7	370
35	Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers. Journal of the American Chemical Society, 2012, 134, 18790-18796.	6.6	370
36	A historical overview of the activation and porosity of metal–organic frameworks. Chemical Society Reviews, 2020, 49, 7406-7427.	18.7	367

#	Article	IF	CITATIONS
37	Simple and Compelling Biomimetic Metal–Organic Framework Catalyst for the Degradation of Nerve Agent Simulants. Angewandte Chemie - International Edition, 2014, 53, 497-501.	7.2	364
38	Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nature Communications, 2012, 3, 604.	5.8	356
39	Carborane-based metal–organic frameworks as highly selective sorbents for CO2 over methane. Chemical Communications, 2008, , 4135.	2.2	349
40	Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites. Chemistry of Materials, 2017, 29, 1357-1361.	3.2	346
41	Thin Films and Solar Cells Based on Semiconducting Two-Dimensional Ruddlesden–Popper (CH ₃ (CH ₂) ₃ NH ₃) ₂ (CH ₃ NH <sub Perovskites. ACS Energy Letters, 2017, 2, 982-990.</sub 	>3≪a/saup>)	<sublacki>n<</sublacki>
42	Control over Catenation in Metalâ~'Organic Frameworks via Rational Design of the Organic Building Block. Journal of the American Chemical Society, 2010, 132, 950-952.	6.6	344
43	Solventâ€Assisted Linker Exchange: An Alternative to the Deâ€Novo Synthesis of Unattainable Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2014, 53, 4530-4540.	7.2	339
44	Instantaneous Hydrolysis of Nerveâ€Agent Simulants with a Sixâ€Connected Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2015, 54, 6795-6799.	7.2	338
45	Structure–property relationships of porous materials for carbon dioxide separation and capture. Energy and Environmental Science, 2012, 5, 9849.	15.6	334
46	Acid-Resistant Mesoporous Metal–Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release. Journal of the American Chemical Society, 2018, 140, 5678-5681.	6.6	334
47	High Efficiency Adsorption and Removal of Selenate and Selenite from Water Using Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 7488-7494.	6.6	330
48	Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. Journal of the American Chemical Society, 2015, 137, 3585-3591.	6.6	329
49	Energy Transfer from Quantum Dots to Metal–Organic Frameworks for Enhanced Light Harvesting. Journal of the American Chemical Society, 2013, 135, 955-958.	6.6	328
50	Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coordination Chemistry Reviews, 2019, 386, 32-49.	9.5	326
51	Using nature's blueprint to expand catalysis with Earth-abundant metals. Science, 2020, 369, .	6.0	306
52	Post-Synthesis Alkoxide Formation Within Metalâ^'Organic Framework Materials: A Strategy for Incorporating Highly Coordinatively Unsaturated Metal Ions. Journal of the American Chemical Society, 2009, 131, 3866-3868.	6.6	302
53	Encapsulation of a Nerve Agent Detoxifying Enzyme by a Mesoporous Zirconium Metal–Organic Framework Engenders Thermal and Long-Term Stability. Journal of the American Chemical Society, 2016, 138, 8052-8055.	6.6	302
54	Urea Metal–Organic Frameworks as Effective and Size-Selective Hydrogen-Bond Catalysts. Journal of the American Chemical Society, 2012, 134, 3334-3337.	6.6	292

#	Article	IF	CITATIONS
55	Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 2017, 7, 997-1014.	5.5	288
56	Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science, 2017, 356, 624-627.	6.0	286
57	Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 10294-10301.	6.6	282
58	Copper Metal–Organic Framework Nanoparticles Stabilized with Folic Acid Improve Wound Healing in Diabetes. ACS Nano, 2018, 12, 1023-1032.	7.3	282
59	Hierarchically Engineered Mesoporous Metal-Organic Frameworks toward Cell-free Immobilized Enzyme Systems. CheM, 2018, 4, 1022-1034.	5.8	281
60	Are Zr ₆ -based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chemical Communications, 2014, 50, 8944.	2.2	277
61	Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000. Nature Protocols, 2016, 11, 149-162.	5.5	276
62	Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coordination Chemistry Reviews, 2017, 346, 101-111.	9.5	275
63	Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 1977-1982.	6.6	273
64	Synthesis, Properties, and Gas Separation Studies of a Robust Diimide-Based Microporous Organic Polymer. Chemistry of Materials, 2009, 21, 3033-3035.	3.2	272
65	Synthesis and Hydrogen Sorption Properties of Carborane Based Metalâ^'Organic Framework Materials. Journal of the American Chemical Society, 2007, 129, 12680-12681.	6.6	269
66	Temperature Treatment of Highly Porous Zirconium-Containing Metal–Organic Frameworks Extends Drug Delivery Release. Journal of the American Chemical Society, 2017, 139, 7522-7532.	6.6	269
67	Transmetalation: routes to metal exchange within metal–organic frameworks. Journal of Materials Chemistry A, 2013, 1, 5453.	5.2	267
68	Directed Growth of Electroactive Metalâ€Organic Framework Thin Films Using Electrophoretic Deposition. Advanced Materials, 2014, 26, 6295-6300.	11.1	265
69	Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH ₂ . Chemical Science, 2015, 6, 2286-2291.	3.7	265
70	Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?. APL Materials, 2014, 2, .	2.2	264
71	Kinetic Separation of Propene and Propane in Metalâ^'Organic Frameworks: Controlling Diffusion Rates in Plate-Shaped Crystals via Tuning of Pore Apertures and Crystallite Aspect Ratios. Journal of the American Chemical Society, 2011, 133, 5228-5231.	6.6	263
72	Evaluation of BrÃ,nsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration. Journal of Materials Chemistry A, 2016, 4, 1479-1485.	5.2	259

#	Article	IF	CITATIONS
73	Mechanochemical and solvent-free assembly of zirconium-based metal–organic frameworks. Chemical Communications, 2016, 52, 2133-2136.	2.2	256
74	Incorporation of an A1/A2-Difunctionalized Pillar[5]arene into a Metal–Organic Framework. Journal of the American Chemical Society, 2012, 134, 17436-17439.	6.6	254
75	Melt-Quenched Glasses of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 3484-3492.	6.6	252
76	Layer-by-Layer Fabrication of Oriented Porous Thin Films Based on Porphyrin-Containing Metal–Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 15698-15701.	6.6	250
77	Selective Photooxidation of a Mustardâ€Gas Simulant Catalyzed by a Porphyrinic Metal–Organic Framework. Angewandte Chemie - International Edition, 2015, 54, 9001-9005.	7.2	244
78	Post-Synthesis Modification of a Metal–Organic Framework To Form Metallosalen-Containing MOF Materials. Journal of the American Chemical Society, 2011, 133, 13252-13255.	6.6	243
79	Metal–Organic Framework Thin Films Composed of Free-Standing Acicular Nanorods Exhibiting Reversible Electrochromism. Chemistry of Materials, 2013, 25, 5012-5017.	3.2	242
80	Activation of metal–organic framework materials. CrystEngComm, 2013, 15, 9258.	1.3	239
81	A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nature Communications, 2015, 6, 8304.	5.8	239
82	Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm, 2017, 19, 4082-4091.	1.3	235
83	99TcO4â [~] remediation by a cationic polymeric network. Nature Communications, 2018, 9, 3007.	5.8	234
84	Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy and Environmental Science, 2016, 9, 3279-3289.	15.6	231
85	In silico discovery of metal-organic frameworks for precombustion CO ₂ capture using a genetic algorithm. Science Advances, 2016, 2, e1600909.	4.7	231
86	DNA-Functionalized Metal–Organic Framework Nanoparticles for Intracellular Delivery of Proteins. Journal of the American Chemical Society, 2019, 141, 2215-2219.	6.6	231
87	Defining the Proton Topology of the Zr ₆ -Based Metal–Organic Framework NU-1000. Journal of Physical Chemistry Letters, 2014, 5, 3716-3723.	2.1	228
88	Metal–Organic Framework Nodes as Nearly Ideal Supports for Molecular Catalysts: NU-1000- and UiO-66-Supported Iridium Complexes. Journal of the American Chemical Society, 2015, 137, 7391-7396.	6.6	228
89	Metalââ,¬â€œOrganic Framework-Based Catalysts: Chemical Fixation of CO2 with Epoxides Leading to Cyclic Organic Carbonates. Frontiers in Energy Research, 2015, 2, .	1.2	225
90	Selective Bifunctional Modification of a Non-catenated Metalâ^'Organic Framework Material via "Click―Chemistry. Journal of the American Chemical Society, 2009, 131, 13613-13615.	6.6	224

#	Article	IF	CITATIONS
91	Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature. ACS Central Science, 2017, 3, 31-38.	5.3	222
92	Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases. Energy and Environmental Science, 2013, 6, 1158.	15.6	219
93	A Metal–Organic Framework-Based Material for Electrochemical Sensing of Carbon Dioxide. Journal of the American Chemical Society, 2014, 136, 8277-8282.	6.6	218
94	Catalytic applications of enzymes encapsulated in metal–organic frameworks. Coordination Chemistry Reviews, 2019, 381, 151-160.	9.5	214
95	Engineering ZIFâ€8 Thin Films for Hybrid MOFâ€Based Devices. Advanced Materials, 2012, 24, 3970-3974.	11.1	213
96	An Exceptionally Stable Metal–Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation. Journal of the American Chemical Society, 2016, 138, 14720-14726.	6.6	211
97	Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)zinc(II) MOFs. Journal of the American Chemical Society, 2016, 138, 14449-14457.	6.6	210
98	Toward solar fuels: Water splitting with sunlight and "rust�. Coordination Chemistry Reviews, 2012, 256, 2521-2529.	9.5	209
99	Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation. Chemical Communications, 2014, 50, 1965.	2.2	208
100	Dual-Function Metal–Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants. ACS Nano, 2015, 9, 12358-12364.	7.3	207
101	Vanadium-Node-Functionalized UiO-66: A Thermally Stable MOF-Supported Catalyst for the Gas-Phase Oxidative Dehydrogenation of Cyclohexene. ACS Catalysis, 2014, 4, 2496-2500.	5.5	206
102	Nanosizing a Metal–Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis. ACS Nano, 2016, 10, 9174-9182.	7.3	202
103	Application of Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 215-224.	6.6	201
104	Designing Higher Surface Area Metal–Organic Frameworks: Are Triple Bonds Better Than Phenyls?. Journal of the American Chemical Society, 2012, 134, 9860-9863.	6.6	198
105	Synthesis of nanocrystals of Zr-based metal–organic frameworks with csq-net: significant enhancement in the degradation of a nerve agent simulant. Chemical Communications, 2015, 51, 10925-10928.	2.2	194
106	<i>In Situ</i> Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society, 2016, 138, 2929-2932.	6.6	194
107	An Interpenetrated Framework Material with Hysteretic CO ₂ Uptake. Chemistry - A European Journal, 2010, 16, 276-281.	1.7	192
108	Computational Design of Metal–Organic Frameworks Based on Stable Zirconium Building Units for Storage and Delivery of Methane. Chemistry of Materials, 2014, 26, 5632-5639.	3.2	191

#	Article	IF	CITATIONS
109	Ni(III)/(IV) Bis(dicarbollide) as a Fast, Noncorrosive Redox Shuttle for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2010, 132, 4580-4582.	6.6	190
110	Turning On Catalysis: Incorporation of a Hydrogen-Bond-Donating Squaramide Moiety into a Zr Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 919-925.	6.6	186
111	Role of Modulators in Controlling the Colloidal Stability and Polydispersity of the UiO-66 Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 33413-33418.	4.0	183
112	The dual capture of As ^V and As ^{III} by UiO-66 and analogues. Chemical Science, 2016, 7, 6492-6498.	3.7	181
113	Single-Atom-Based Vanadium Oxide Catalysts Supported on Metal–Organic Frameworks: Selective Alcohol Oxidation and Structure–Activity Relationship. Journal of the American Chemical Society, 2018, 140, 8652-8656.	6.6	181
114	Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks. Molecular Systems Design and Engineering, 2019, 4, 162-174.	1.7	179
115	MOF Functionalization via Solvent-Assisted Ligand Incorporation: Phosphonates vs Carboxylates. Inorganic Chemistry, 2015, 54, 2185-2192.	1.9	177
116	Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chemical Communications, 2016, 52, 7806-7809.	2.2	177
117	Successful Decontamination of ⁹⁹ TcO ₄ ^{â~`} in Groundwater at Legacy Nuclear Sites by a Cationic Metalâ€Organic Framework with Hydrophobic Pockets. Angewandte Chemie - International Edition, 2019, 58, 4968-4972.	7.2	177
118	Design and Synthesis of a Waterâ€Stable Anionic Uraniumâ€Based Metal–Organic Framework (MOF) with Ultra Large Pores. Angewandte Chemie - International Edition, 2016, 55, 10358-10362.	7.2	175
119	Zirconium-Based Metal–Organic Frameworks for the Catalytic Hydrolysis of Organophosphorus Nerve Agents. ACS Applied Materials & Interfaces, 2020, 12, 14702-14720.	4.0	175
120	Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. Journal of the American Chemical Society, 2022, 144, 10663-10687.	6.6	174
121	Inverse design of nanoporous crystalline reticular materials with deep generative models. Nature Machine Intelligence, 2021, 3, 76-86.	8.3	172
122	Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochemistry Communications, 2015, 58, 51-56.	2.3	171
123	Fabrication of Metalâ€Organic Frameworkâ€Containing Silicaâ€Colloidal Crystals for Vapor Sensing. Advanced Materials, 2011, 23, 4449-4452.	11.1	170
124	Outer-Sphere Redox Couples as Shuttles in Dye-Sensitized Solar Cells. Performance Enhancement Based on Photoelectrode Modification via Atomic Layer Deposition. Journal of Physical Chemistry C, 2008, 112, 19756-19764.	1.5	168
125	Synthesis of catalytically active porous organic polymers from metalloporphyrin building blocks. Chemical Science, 2011, 2, 686.	3.7	168
126	Metal–organic framework (MOF) materials as polymerization catalysts: a review and recent advances. Chemical Communications, 2020, 56, 10409-10418.	2.2	168

#	Article	IF	CITATIONS
127	Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange. Chemical Science, 2012, 3, 3256.	3.7	166
128	Integration of Enzymes and Photosensitizers in a Hierarchical Mesoporous Metal–Organic Framework for Light-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2020, 142, 1768-1773.	6.6	163
129	Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal–Organic Framework <i>via</i> Atomic Layer Deposition. ACS Nano, 2015, 9, 8484-8490.	7.3	158
130	Increased Electrical Conductivity in a Mesoporous Metal–Organic Framework Featuring Metallacarboranes Guests. Journal of the American Chemical Society, 2018, 140, 3871-3875.	6.6	158
131	A porous, electrically conductive hexa-zirconium(<scp>iv</scp>) metal–organic framework. Chemical Science, 2018, 9, 4477-4482.	3.7	158
132	A Flexible Metal–Organic Framework with 4-Connected Zr ₆ Nodes. Journal of the American Chemical Society, 2018, 140, 11179-11183.	6.6	158
133	Tailoring the Pore Size and Functionality of UiO-Type Metal–Organic Frameworks for Optimal Nerve Agent Destruction. Inorganic Chemistry, 2015, 54, 9684-9686.	1.9	157
134	Copper Nanoparticles Installed in Metal–Organic Framework Thin Films are Electrocatalytically Competent for CO ₂ Reduction. ACS Energy Letters, 2017, 2, 2394-2401.	8.8	157
135	A "click-based―porous organic polymer from tetrahedral building blocks. Journal of Materials Chemistry, 2011, 21, 1700.	6.7	156
136	Selective isolation of gold facilitated by second-sphere coordination with α-cyclodextrin. Nature Communications, 2013, 4, 1855.	5.8	156
137	Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr ₆ Nodes of UiO-66 and NU-1000. Journal of the American Chemical Society, 2016, 138, 15189-15196.	6.6	155
138	Catalytic chemoselective functionalization of methane in a metalâ^'organic framework. Nature Catalysis, 2018, 1, 356-362.	16.1	153
139	Toward Inexpensive Photocatalytic Hydrogen Evolution: A Nickel Sulfide Catalyst Supported on a High-Stability Metal–Organic Framework. ACS Applied Materials & Interfaces, 2016, 8, 20675-20681.	4.0	151
140	Waterâ€Stable Zirconiumâ€Based Metal–Organic Framework Material with Highâ€Surface Area and Gasâ€Storage Capacities. Chemistry - A European Journal, 2014, 20, 12389-12393.	1.7	150
141	Tuning Zr ₆ Metal–Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts. ACS Catalysis, 2016, 6, 235-247.	5.5	150
142	Reticular Access to Highly Porous acs -MOFs with Rigid Trigonal Prismatic Linkers for Water Sorption. Journal of the American Chemical Society, 2019, 141, 2900-2905.	6.6	150
143	A Zn-based, pillared paddlewheel MOF containing free carboxylic acids via covalent post-synthesis elaboration. Chemical Communications, 2009, , 3720.	2.2	149
144	Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology. Journal of the American Chemical Society, 2015, 137, 13183-13190.	6.6	149

#	Article	IF	CITATIONS
145	Scalable and Template-Free Aqueous Synthesis of Zirconium-Based Metal–Organic Framework Coating on Textile Fiber. Journal of the American Chemical Society, 2019, 141, 15626-15633.	6.6	148
146	MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chemical Society Reviews, 2022, 51, 1045-1097.	18.7	148
147	Computational screening of metal-organic frameworks for xenon/krypton separation. AICHE Journal, 2011, 57, 1759-1766.	1.8	147
148	Enhanced Catalytic Activity through the Tuning of Micropore Environment and Supercritical CO ₂ Processing: Al(Porphyrin)-Based Porous Organic Polymers for the Degradation of a Nerve Agent Simulant. Journal of the American Chemical Society, 2013, 135, 11720-11723.	6.6	147
149	Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal–organic framework. Journal of Materials Chemistry A, 2016, 4, 13809-13813.	5.2	147
150	Benchmark Study of Hydrogen Storage in Metal–Organic Frameworks under Temperature and Pressure Swing Conditions. ACS Energy Letters, 2018, 3, 748-754.	8.8	147
151	Zirconium Metal–Organic Frameworks for Organic Pollutant Adsorption. Trends in Chemistry, 2019, 1, 304-317.	4.4	147
152	Surfaceâ€&pecific Functionalization of Nanoscale Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 14738-14742.	7.2	146
153	Metal–Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 28223-28230.	4.0	145
154	Reticular Chemistry for Highly Porous Metal–Organic Frameworks: The Chemistry and Applications. Accounts of Chemical Research, 2022, 55, 579-591.	7.6	145
155	Chemical reduction of a diimide based porous polymer for selective uptake of carbon dioxide versus methane. Chemical Communications, 2010, 46, 1056.	2.2	144
156	Adsorption of a Catalytically Accessible Polyoxometalate in a Mesoporous Channel-type Metal–Organic Framework. Chemistry of Materials, 2017, 29, 5174-5181.	3.2	143
157	Porous materials for hydrogen storage. CheM, 2022, 8, 693-716.	5.8	143
158	Solvent-assisted linker exchange (SALE) and post-assembly metallation in porphyrinic metal–organic framework materials. Chemical Science, 2013, 4, 1509.	3.7	142
159	A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coordination Chemistry Reviews, 2021, 429, 213615.	9.5	140
160	Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal–organic framework NU-111. Chemical Communications, 2013, 49, 2992.	2.2	137
161	A Hafnium-Based Metal–Organic Framework as a Nature-Inspired Tandem Reaction Catalyst. Journal of the American Chemical Society, 2015, 137, 13624-13631.	6.6	137
162	Computer-aided discovery of a metal–organic framework with superior oxygen uptake. Nature Communications, 2018, 9, 1378.	5.8	136

#	Article	IF	CITATIONS
163	Revisiting the structural homogeneity of NU-1000, a Zr-based metal–organic framework. CrystEngComm, 2018, 20, 5913-5918.	1.3	136
164	Separation of gas mixtures using Co(ii) carborane-based porous coordination polymers. Chemical Communications, 2010, 46, 3478.	2.2	135
165	Control over Catenation in Pillared Paddlewheel Metal–Organic Framework Materials via Solvent-Assisted Linker Exchange. Chemistry of Materials, 2013, 25, 739-744.	3.2	135
166	Cerium(IV) vs Zirconium(IV) Based Metal–Organic Frameworks for Detoxification of a Nerve Agent. Chemistry of Materials, 2017, 29, 2672-2675.	3.2	135
167	A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals. New Journal of Chemistry, 2015, 39, 2396-2399.	1.4	133
168	Metal–organic frameworks for applications in remediation of oxyanion/cation-contaminated water. CrystEngComm, 2015, 17, 7245-7253.	1.3	133
169	Gasâ€Sorption Properties of Cobalt(II)–Carboraneâ€Based Coordination Polymers as a Function of Morphology. Small, 2009, 5, 1727-1731.	5.2	132
170	Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr ₆ -Based Metal–Organic Frameworks. Inorganic Chemistry, 2015, 54, 10829-10833.	1.9	132
171	Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 9292-9304.	6.6	131
172	Metal–Organic Frameworks as Platform Materials for Solar Fuels Catalysis. ACS Energy Letters, 2018, 3, 598-611.	8.8	130
173	Topology and porosity control of metal–organic frameworks through linker functionalization. Chemical Science, 2019, 10, 1186-1192.	3.7	129
174	Enhancement of CO2/CH4 selectivity in metal-organic frameworks containing lithium cations. Microporous and Mesoporous Materials, 2011, 141, 231-235.	2.2	128
175	Gas-Phase Dimerization of Ethylene under Mild Conditions Catalyzed by MOF Materials Containing (bpy)Ni ^{II} Complexes. ACS Catalysis, 2015, 5, 6713-6718.	5.5	127
176	Mechanical properties of metal–organic frameworks. Chemical Science, 2019, 10, 10666-10679.	3.7	126
177	Efficient Capture of Perrhenate and Pertechnetate by a Mesoporous Zr Metal–Organic Framework and Examination of Anion Binding Motifs. Chemistry of Materials, 2018, 30, 1277-1284.	3.2	125
178	Identification Schemes for Metal–Organic Frameworks To Enable Rapid Search and Cheminformatics Analysis. Crystal Growth and Design, 2019, 19, 6682-6697.	1.4	123
179	Electronic Tuning of Nickelâ€Based Bis(dicarbollide) Redox Shuttles in Dye ensitized Solar Cells. Angewandte Chemie - International Edition, 2010, 49, 5339-5343.	7.2	121
180	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Angewandte Chemie - International Edition, 2018, 57, 1949-1953.	7.2	121

#	Article	IF	CITATIONS
181	Bias-Switchable Permselectivity and Redox Catalytic Activity of a Ferrocene-Functionalized, Thin-Film Metal–Organic Framework Compound. Journal of Physical Chemistry Letters, 2015, 6, 586-591.	2.1	120
182	Benign by Design: Green and Scalable Synthesis of Zirconium UiO-Metal–Organic Frameworks by Water-Assisted Mechanochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 15841-15849.	3.2	120
183	Core–Shell Gold Nanorod@Zirconium-Based Metal–Organic Framework Composites as <i>in Situ</i> Size-Selective Raman Probes. Journal of the American Chemical Society, 2019, 141, 3893-3900.	6.6	119
184	An Example of Node-Based Postassembly Elaboration of a Hydrogen-Sorbing, Metalâ `Organic Framework Material. Inorganic Chemistry, 2008, 47, 10223-10225.	1.9	118
185	Defect Creation by Linker Fragmentation in Metal–Organic Frameworks and Its Effects on Gas Uptake Properties. Inorganic Chemistry, 2014, 53, 6914-6919.	1.9	118
186	Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition. Chemistry of Materials, 2015, 27, 4772-4778.	3.2	116
187	Covalent Organic Frameworks: Emerging Organic Solid Materials for Energy and Electrochemical Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 27821-27852.	4.0	116
188	Synthesis and evaluation of transthyretin amyloidosis inhibitors containing carborane pharmacophores. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4808-4813.	3.3	115
189	Carborane-Based Metal–Organic Framework with High Methane and Hydrogen Storage Capacities. Chemistry of Materials, 2013, 25, 3539-3543.	3.2	115
190	A Redox-Active Bistable Molecular Switch Mounted inside a Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 14242-14245.	6.6	114
191	Colloidal crystal engineering with metal–organic framework nanoparticles and DNA. Nature Communications, 2020, 11, 2495.	5.8	114
192	Strategies for Incorporating Catalytically Active Polyoxometalates in Metal–Organic Frameworks for Organic Transformations. ACS Applied Materials & Interfaces, 2020, 12, 5345-5360.	4.0	114
193	Fine-Tuning the Activity of Metal–Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. Journal of the American Chemical Society, 2017, 139, 15251-15258.	6.6	112
194	Detoxification of a Sulfur Mustard Simulant Using a BODIPY-Functionalized Zirconium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 24555-24560.	4.0	112
195	Vanadium Catalyst on Isostructural Transition Metal, Lanthanide, and Actinide Based Metal–Organic Frameworks for Alcohol Oxidation. Journal of the American Chemical Society, 2019, 141, 8306-8314.	6.6	112
196	Recent Electrochemical Applications of Metal–Organic Framework-Based Materials. Crystal Growth and Design, 2020, 20, 7034-7064.	1.4	112
197	Selective Surface and Near-Surface Modification of a Noncatenated, Catalytically Active Metal-Organic Framework Material Based on Mn(salen) Struts. Inorganic Chemistry, 2011, 50, 3174-3176.	1.9	111
198	Opening Metal–Organic Frameworks Vol. 2: Inserting Longer Pillars into Pillared-Paddlewheel Structures through Solvent-Assisted Linker Exchange. Chemistry of Materials, 2013, 25, 3499-3503.	3.2	109

#	Article	IF	CITATIONS
199	Exploring the Limits of Methane Storage and Delivery in Nanoporous Materials. Journal of Physical Chemistry C, 2014, 118, 6941-6951.	1.5	108
200	Structural Transitions of the Metal-Oxide Nodes within Metal–Organic Frameworks: On the Local Structures of NU-1000 and UiO-66. Journal of the American Chemical Society, 2016, 138, 4178-4185.	6.6	108
201	Ultrastable Mesoporous Hydrogen-Bonded Organic Framework-Based Fiber Composites toward Mustard Gas Detoxification. Cell Reports Physical Science, 2020, 1, 100024.	2.8	107
202	N-Heterocyclic Carbene-Like Catalysis by a Metal–Organic Framework Material. ACS Catalysis, 2012, 2, 1550-1554.	5.5	106
203	Metal–Organic Frameworks for Oxygen Storage. Angewandte Chemie - International Edition, 2014, 53, 14092-14095.	7.2	106
204	Integration of Metal–Organic Frameworks on Protective Layers for Destruction of Nerve Agents under Relevant Conditions. Journal of the American Chemical Society, 2019, 141, 20016-20021.	6.6	106
205	Zirconium-Based Metal–Organic Frameworks for the Removal of Protein-Bound Uremic Toxin from Human Serum Albumin. Journal of the American Chemical Society, 2019, 141, 2568-2576.	6.6	105
206	Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 33419-33428.	4.0	104
207	SERS of molecules that do not adsorb on Ag surfaces: a metal–organic framework-based functionalization strategy. Analyst, The, 2014, 139, 4073.	1.7	103
208	Single-Site Organozirconium Catalyst Embedded in a Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 15680-15683.	6.6	103
209	Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 7682-7686.	7.2	103
210	Node-Accessible Zirconium MOFs. Journal of the American Chemical Society, 2020, 142, 21110-21121.	6.6	103
211	Water stabilization of Zr ₆ -based metal–organic frameworks via solvent-assisted ligand incorporation. Chemical Science, 2015, 6, 5172-5176.	3.7	102
212	High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27. Dalton Transactions, 2016, 45, 4150-4153.	1.6	102
213	High xenon/krypton selectivity in a metal-organic framework with small pores and strong adsorption sites. Microporous and Mesoporous Materials, 2013, 169, 176-179.	2.2	101
214	Charge Transport in Zirconium-Based Metal–Organic Frameworks. Accounts of Chemical Research, 2020, 53, 1187-1195.	7.6	100
215	Synthesis and Metalation of Catechol-Functionalized Porous Organic Polymers. Chemistry of Materials, 2012, 24, 1292-1296.	3.2	99
216	G-quadruplex organic frameworks. Nature Chemistry, 2017, 9, 466-472.	6.6	99

#	Article	IF	CITATIONS
217	Rendering High Surface Area, Mesoporous Metal–Organic Frameworks Electronically Conductive. ACS Applied Materials & Interfaces, 2017, 9, 12584-12591.	4.0	98
218	Postsynthetic Incorporation of a Singlet Oxygen Photosensitizer in a Metal–Organic Framework for Fast and Selective Oxidative Detoxification of Sulfur Mustard. Chemistry - A European Journal, 2017, 23, 214-218.	1.7	98
219	Tuning the Properties of Zr ₆ O ₈ Nodes in the Metal Organic Framework UiO-66 by Selection of Node-Bound Ligands and Linkers. Chemistry of Materials, 2019, 31, 1655-1663.	3.2	97
220	Observation of reduced thermal conductivity in a metal-organic framework due to the presence of adsorbates. Nature Communications, 2020, 11, 4010.	5.8	97
221	Rational Synthesis of Mixed-Metal Microporous Metal–Organic Frameworks with Controlled Composition Using Mechanochemistry. Chemistry of Materials, 2019, 31, 5494-5501.	3.2	96
222	Metal–organic frameworks: A tunable platform to access single-site heterogeneous catalysts. Applied Catalysis A: General, 2019, 586, 117214.	2.2	96
223	Exploiting π–π Interactions to Design an Efficient Sorbent for Atrazine Removal from Water. ACS Applied Materials & Interfaces, 2019, 11, 6097-6103.	4.0	96
224	Selective Metal–Organic Framework Catalysis of Glucose to 5-Hydroxymethylfurfural Using Phosphate-Modified NU-1000. Industrial & Engineering Chemistry Research, 2017, 56, 7141-7148.	1.8	95
225	Structural Diversity of Zirconium Metal–Organic Frameworks and Effect on Adsorption of Toxic Chemicals. Journal of the American Chemical Society, 2020, 142, 21428-21438.	6.6	95
226	Dye Stabilization and Enhanced Photoelectrode Wettability in Water-Based Dye-Sensitized Solar Cells through Post-assembly Atomic Layer Deposition of TiO ₂ . Journal of the American Chemical Society, 2013, 135, 11529-11532.	6.6	94
227	Post metalation of solvothermally grown electroactive porphyrin metal–organic framework thin films. Chemical Communications, 2015, 51, 2414-2417.	2.2	94
228	Beyond the Active Site: Tuning the Activity and Selectivity of a Metal–Organic Framework-Supported Ni Catalyst for Ethylene Dimerization. Journal of the American Chemical Society, 2018, 140, 11174-11178.	6.6	94
229	Interrogating Kinetic versus Thermodynamic Topologies of Metal–Organic Frameworks via Combined Transmission Electron Microscopy and X-ray Diffraction Analysis. Journal of the American Chemical Society, 2019, 141, 6146-6151.	6.6	94
230	A mixed dicarboxylate strut approach to enhancing catalytic activity of a de novo urea derivative of metal–organic framework UiO-67. Chemical Communications, 2013, 49, 10920.	2.2	93
231	Detoxification of Chemical Warfare Agents Using a Zr ₆ â€Based Metal–Organic Framework/Polymer Mixture. Chemistry - A European Journal, 2016, 22, 14864-14868.	1.7	93
232	Interpenetration Isomerism in Triptyceneâ€Based Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 1664-1669.	7.2	93
233	Comparative study of titanium-functionalized UiO-66: support effect on the oxidation of cyclohexene using hydrogen peroxide. Catalysis Science and Technology, 2015, 5, 4444-4451.	2.1	92
234	Redox-Mediator-Assisted Electrocatalytic Hydrogen Evolution from Water by a Molybdenum Sulfide-Functionalized Metal–Organic Framework. ACS Catalysis, 2018, 8, 9848-9858.	5.5	91

#	Article	IF	CITATIONS
235	Separating Solids: Purification of Metal-Organic Framework Materials. Journal of the American Chemical Society, 2008, 130, 8598-8599.	6.6	89
236	Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal–Organic Frameworks for Krypton/Xenon Separation. Chemistry of Materials, 2020, 32, 3776-3782.	3.2	89
237	Toward Metal–Organic Framework-Based Solar Cells: Enhancing Directional Exciton Transport by Collapsing Three-Dimensional Film Structures. ACS Applied Materials & Interfaces, 2016, 8, 30863-30870.	4.0	88
238	Sinterâ€Resistant Platinum Catalyst Supported by Metal–Organic Framework. Angewandte Chemie - International Edition, 2018, 57, 909-913.	7.2	88
239	Well-Defined Rhodium–Gallium Catalytic Sites in a Metal–Organic Framework: Promoter-Controlled Selectivity in Alkyne Semihydrogenation to <i>E</i> -Alkenes. Journal of the American Chemical Society, 2018, 140, 15309-15318.	6.6	88
240	Post-Synthetically Elaborated BODIPY-Based Porous Organic Polymers (POPs) for the Photochemical Detoxification of a Sulfur Mustard Simulant. Journal of the American Chemical Society, 2020, 142, 18554-18564.	6.6	88
241	Active mechanisorption driven by pumping cassettes. Science, 2021, 374, 1215-1221.	6.0	88
242	Stable Metal–Organic Framework-Supported Niobium Catalysts. Inorganic Chemistry, 2016, 55, 11954-11961.	1.9	85
243	Synthetic Access to Atomically Dispersed Metals in Metal–Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal-Exchange Approach. Chemistry of Materials, 2016, 28, 1213-1219.	3.2	85
244	Creating Optimal Pockets in a Clathrochelate-Based Metal–Organic Framework for Gas Adsorption and Separation: Experimental and Computational Studies. Journal of the American Chemical Society, 2022, 144, 3737-3745.	6.6	85
245	One Step Backward Is Two Steps Forward: Enhancing the Hydrolysis Rate of UiO-66 by Decreasing [OH [–]]. ACS Catalysis, 2015, 5, 4637-4642.	5.5	84
246	A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal–organic frameworks. Energy and Environmental Science, 2015, 8, 1501-1510.	15.6	84
247	Synthesis and Gas Sorption Properties of a Metal-Azolium Framework (MAF) Material. Inorganic Chemistry, 2009, 48, 9971-9973.	1.9	83
248	Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11161-11168.	3.3	83
249	Thermal Stabilization of Metal–Organic Framework-Derived Single-Site Catalytic Clusters through Nanocasting. Journal of the American Chemical Society, 2016, 138, 2739-2748.	6.6	83
250	Fiber Composites of Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 7120-7140.	3.2	82
251	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34, ·	11.1	82
252	Room Temperature Synthesis of an 8-Connected Zr-Based Metal–Organic Framework for Top-Down Nanoparticle Encapsulation. Chemistry of Materials, 2018, 30, 2193-2197.	3.2	80

#	Article	IF	CITATIONS
253	From Transition Metals to Lanthanides to Actinides: Metal-Mediated Tuning of Electronic Properties of Isostructural Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13246-13251.	1.9	80
254	Exploring the Role of Hexanuclear Clusters as Lewis Acidic Sites in Isostructural Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 4166-4172.	3.2	80
255	Extended Metal–Organic Frameworks on Diverse Supports as Electrode Nanomaterials for Electrochemical Energy Storage. ACS Applied Nano Materials, 2020, 3, 3964-3990.	2.4	80
256	Noninvasive Substitution of K ⁺ Sites in Cyclodextrin Metal–Organic Frameworks by Li ⁺ lons. Journal of the American Chemical Society, 2017, 139, 11020-11023.	6.6	79
257	Efficient Removal of Per- and Polyfluoroalkyl Substances from Water with Zirconium-Based Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 3276-3285.	3.2	79
258	Fine-Tuning a Robust Metal–Organic Framework toward Enhanced Clean Energy Gas Storage. Journal of the American Chemical Society, 2021, 143, 18838-18843.	6.6	79
259	Synthesis of Stable Dodecaalkoxy Derivatives of hypercloso-B12H12. Journal of the American Chemical Society, 2005, 127, 18243-18251.	6.6	78
260	A metal–organic framework immobilised iridium pincer complex. Chemical Science, 2016, 7, 4980-4984.	3.7	78
261	Regioselective Atomic Layer Deposition in Metal–Organic Frameworks Directed by Dispersion Interactions. Journal of the American Chemical Society, 2016, 138, 13513-13516.	6.6	78
262	Computationally Guided Discovery of a Catalytic Cobalt-Decorated Metal–Organic Framework for Ethylene Dimerization. Journal of Physical Chemistry C, 2016, 120, 23576-23583.	1.5	78
263	Enhanced Activity of Heterogeneous Pd(II) Catalysts on Acid-Functionalized Metal–Organic Frameworks. ACS Catalysis, 2019, 9, 5383-5390.	5.5	77
264	Fast Transporting ZnO–TiO ₂ Coaxial Photoanodes for Dye-Sensitized Solar Cells Based on ALD-Modified SiO ₂ Aerogel Frameworks. ACS Nano, 2012, 6, 6185-6196.	7.3	76
265	Systematic Modulation of Quantum (Electron) Tunneling Behavior by Atomic Layer Deposition on Nanoparticulate SnO ₂ and TiO ₂ Photoanodes. Journal of the American Chemical Society, 2013, 135, 16328-16331.	6.6	76
266	Catalytic Solvolytic and Hydrolytic Degradation of Toxic Methyl Paraoxon with La(catecholate)-Functionalized Porous Organic Polymers. ACS Catalysis, 2013, 3, 1454-1459.	5.5	76
267	Isoreticular Series of (3,24)-Connected Metal–Organic Frameworks: Facile Synthesis and High Methane Uptake Properties. Chemistry of Materials, 2014, 26, 1912-1917.	3.2	76
268	Photodriven hydrogen evolution by molecular catalysts using Al ₂ O ₃ -protected perylene-3,4-dicarboximide on NiO electrodes. Chemical Science, 2017, 8, 541-549.	3.7	76
269	Accessing functionalized porous aromatic frameworks (PAFs) through a de novo approach. CrystEngComm, 2013, 15, 1515-1519.	1.3	75
270	Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires. Journal of the American Chemical Society, 2017, 139, 10410-10418.	6.6	74

#	Article	IF	CITATIONS
271	Pushing the Limits on Metal–Organic Frameworks as a Catalyst Support: NU-1000 Supported Tungsten Catalysts for <i>o</i> -Xylene Isomerization and Disproportionation. Journal of the American Chemical Society, 2018, 140, 8535-8543.	6.6	73
272	Controlling the Polymorphism and Topology Transformation in Porphyrinic Zirconium Metal–Organic Frameworks via Mechanochemistry. Journal of the American Chemical Society, 2019, 141, 19214-19220.	6.6	73
273	Insights into the Enhanced Catalytic Activity of Cytochrome c When Encapsulated in a Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 18576-18582.	6.6	73
274	Systematic Study on the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater Using Metal–Organic Frameworks. Environmental Science & Technology, 2021, 55, 15162-15171.	4.6	73
275	Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Research, 2018, 11, 1850-1860.	5.8	72
276	Thermally induced migration of a polyoxometalate within a metal–organic framework and its catalytic effects. Journal of Materials Chemistry A, 2018, 6, 7389-7394.	5.2	71
277	Anisotropic Redox Conductivity within a Metal–Organic Framework Material. Journal of the American Chemical Society, 2019, 141, 17696-17702.	6.6	71
278	Direct Imaging of Isolated Single-Molecule Magnets in Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 2997-3005.	6.6	71
279	Optimizing Toxic Chemical Removal through Defectâ€Induced UiOâ€66â€NH ₂ Metal–Organic Framework. Chemistry - A European Journal, 2017, 23, 15913-15916.	1.7	70
280	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	1.6	70
281	Uncovering the Role of Metal–Organic Framework Topology on the Capture and Reactivity of Chemical Warfare Agents. Chemistry of Materials, 2020, 32, 4609-4617.	3.2	70
282	Phase Transitions in Metal–Organic Frameworks Directly Monitored through In Situ Variable Temperature Liquid-Cell Transmission Electron Microscopy and In Situ X-ray Diffraction. Journal of the American Chemical Society, 2020, 142, 4609-4615.	6.6	69
283	A Bismuth Metal–Organic Framework as a Contrast Agent for X-ray Computed Tomography. ACS Applied Bio Materials, 2019, 2, 1197-1203.	2.3	68
284	Introducing Nonstructural Ligands to Zirconia-like Metal–Organic Framework Nodes To Tune the Activity of Node-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catalysis, 2019, 9, 3198-3207.	5.5	68
285	Unexpected "Spontaneous―Evolution of Catalytic, MOF-Supported Single Cu(II) Cations to Catalytic, MOF-Supported Cu(0) Nanoparticles. Journal of the American Chemical Society, 2020, 142, 21169-21177.	6.6	68
286	Improving the Efficiency of Mustard Gas Simulant Detoxification by Tuning the Singlet Oxygen Quantum Yield in Metal–Organic Frameworks and Their Corresponding Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 23802-23806.	4.0	67
287	Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metal–organic frameworks for toxic chemical removal. CrystEngComm, 2019, 21, 2409-2415.	1.3	67
288	H ₅ PV ₂ Mo ₁₀ O ₄₀ Polyoxometalate Encapsulated in NU-1000 Metal–Organic Framework for Aerobic Oxidation of a Mustard Gas Simulant. ACS Applied Nano Materials, 2020, 3, 658-664.	2.4	67

#	Article	IF	CITATIONS
289	Tuning the Redox Activity of Metal–Organic Frameworks for Enhanced, Selective O ₂ Binding: Design Rules and Ambient Temperature O ₂ Chemisorption in a Cobalt–Triazolate Framework. Journal of the American Chemical Society, 2020, 142, 4317-4328.	6.6	67
290	Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000. Faraday Discussions, 2017, 201, 337-350.	1.6	66
291	A Highly Porous Metal-Organic Framework System to Deliver Payloads for Gene Knockdown. CheM, 2019, 5, 2926-2941.	5.8	66
292	Aromatizing Olefin Metathesis by Ligand Isolation inside a Metal– Organic Framework. Journal of the American Chemical Society, 2013, 135, 14916-14919.	6.6	65
293	Computational Screening of Nanoporous Materials for Hexane and Heptane Isomer Separation. Chemistry of Materials, 2017, 29, 6315-6328.	3.2	65
294	Porosity tuning of carborane-based metal–organic frameworks (MOFs) via coordination chemistry and ligand design. Inorganica Chimica Acta, 2010, 364, 266-271.	1.2	64
295	Immobilized Regenerable Active Chlorine within a Zirconium-Based MOF Textile Composite to Eliminate Biological and Chemical Threats. Journal of the American Chemical Society, 2021, 143, 16777-16785.	6.6	64
296	Atomistic Approach toward Selective Photocatalytic Oxidation of a Mustard-Gas Simulant: A Case Study with Heavy-Chalcogen-Containing PCN-57 Analogues. ACS Applied Materials & Interfaces, 2017, 9, 19535-19540.	4.0	63
297	Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal–organic frameworks. Chemical Communications, 2018, 54, 6999-7002.	2.2	63
298	A catalytically active vanadyl(catecholate)-decorated metal organic framework via post-synthesis modifications. CrystEngComm, 2012, 14, 4115.	1.3	62
299	Complete Double Epoxidation of Divinylbenzene Using Mn(porphyrin)-Based Porous Organic Polymers. ACS Catalysis, 2015, 5, 4859-4866.	5.5	61
300	Modulating the rate of charge transport in a metal–organic framework thin film using host:guest chemistry. Chemical Communications, 2016, 52, 1705-1708.	2.2	61
301	From 2-methylimidazole to 1,2,3-triazole: a topological transformation of ZIF-8 and ZIF-67 by post-synthetic modification. Chemical Communications, 2017, 53, 2028-2031.	2.2	61
302	Stable and catalytically active iron porphyrin-based porous organic polymer: Activity as both a redox and Lewis acid catalyst. Scientific Reports, 2015, 5, 10621.	1.6	60
303	Real-Time Observation of Atomic Layer Deposition Inhibition: Metal Oxide Growth on Self-Assembled Alkanethiols. ACS Applied Materials & Interfaces, 2014, 6, 11891-11898.	4.0	59
304	Adding to the Arsenal of Zirconiumâ€Based Metal–Organic Frameworks: <i>the</i> Topology as a Platform for Solventâ€Assisted Metal Incorporation. European Journal of Inorganic Chemistry, 2016, 2016, 4349-4352.	1.0	59
305	Improvement of Methane–Framework Interaction by Controlling Pore Size and Functionality of Pillared MOFs. Inorganic Chemistry, 2017, 56, 2581-2588.	1.9	59
306	Tuning ethylene gas adsorption via metal node modulation: Cu-MOF-74 for a high ethylene deliverable capacity. Chemical Communications, 2017, 53, 9376-9379.	2.2	59

#	Article	IF	CITATIONS
307	Zirconium-Based Metal–Organic Framework with 9-Connected Nodes for Ammonia Capture. ACS Applied Nano Materials, 2019, 2, 6098-6102.	2.4	59
308	Functionalized Defects through Solvent-Assisted Linker Exchange: Synthesis, Characterization, and Partial Postsynthesis Elaboration of a Metal–Organic Framework Containing Free Carboxylic Acid Moieties. Inorganic Chemistry, 2015, 54, 1785-1790.	1.9	58
309	Ligand-Directed Reticular Synthesis of Catalytically Active Missing Zirconium-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12229-12235.	6.6	58
310	Recent Advances in Rechargeable Aluminum-Ion Batteries and Considerations for Their Future Progress. ACS Applied Energy Materials, 2020, 3, 6019-6035.	2.5	58
311	Greenlighting Photoelectrochemical Oxidation of Water by Iron Oxide. ACS Nano, 2014, 8, 12199-12207.	7.3	57
312	A visually detectable pH responsive zirconium metal–organic framework. Chemical Communications, 2016, 52, 3438-3441.	2.2	57
313	Toward Base Heterogenization: A Zirconium Metal–Organic Framework/Dendrimer or Polymer Mixture for Rapid Hydrolysis of a Nerve-Agent Simulant. ACS Applied Nano Materials, 2019, 2, 1005-1008.	2.4	57
314	Insights into the Structure and Dynamics of Metal–Organic Frameworks via Transmission Electron Microscopy. Journal of the American Chemical Society, 2020, 142, 17224-17235.	6.6	57
315	Installing Heterobimetallic Cobalt–Aluminum Single Sites on a Metal Organic Framework Support. Chemistry of Materials, 2016, 28, 6753-6762.	3.2	56
316	Efficient extraction of sulfate from water using a Zr-metal–organic framework. Dalton Transactions, 2016, 45, 93-97.	1.6	56
317	Ammonia Capture within Isoreticular Metal–Organic Frameworks with Rod Secondary Building Units. , 2019, 1, 476-480.		56
318	Metal–Organic Framework Supported Single Site Chromium(III) Catalyst for Ethylene Oligomerization at Low Pressure and Temperature. ACS Sustainable Chemistry and Engineering, 2019, 7, 2553-2557.	3.2	56
319	Small Molecules, Big Effects: Tuning Adsorption and Catalytic Properties of Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 1444-1454.	3.2	56
320	Alkoxy Derivatives of Dodecaborate: Discrete Nanomolecular Ions with Tunable Pseudometallic Properties. Angewandte Chemie - International Edition, 2007, 46, 3018-3022.	7.2	55
321	Post-assembly transformations of porphyrin-containing metal–organic framework (MOF) films fabricated via automated layer-by-layer coordination. Chemical Communications, 2015, 51, 85-88.	2.2	54
322	Inorganic "Conductive Glass―Approach to Rendering Mesoporous Metal–Organic Frameworks Electronically Conductive and Chemically Responsive. ACS Applied Materials & Interfaces, 2018, 10, 30532-30540.	4.0	54
323	Thermally Enhancing the Surface Areas of Yamamoto-Derived Porous Organic Polymers. Chemistry of Materials, 2013, 25, 12-16.	3.2	53
324	Computational Predictions and Experimental Validation of Alkane Oxidative Dehydrogenation by Fe ₂ M MOF Nodes. ACS Catalysis, 2020, 10, 1460-1469.	5.5	53

#	Article	IF	CITATIONS
325	Isothermal Titration Calorimetry to Explore the Parameter Space of Organophosphorus Agrochemical Adsorption in MOFs. Journal of the American Chemical Society, 2020, 142, 12357-12366.	6.6	53
326	Effect of Redox "Non-Innocent―Linker on the Catalytic Activity of Copper-Catecholate-Decorated Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 635-641.	4.0	52
327	Metal–Organic Framework Nodes as a Supporting Platform for Tailoring the Activity of Metal Catalysts. ACS Catalysis, 2020, 10, 11556-11566.	5.5	52
328	Stabilizing unstable species through single-site isolation: a catalytically active TaV trialkyl in a porous organic polymer. Chemical Science, 2013, 4, 2483.	3.7	51
329	Porosity Dependence of Compression and Lattice Rigidity in Metal–Organic Framework Series. Journal of the American Chemical Society, 2019, 141, 4365-4371.	6.6	51
330	Understanding excess uptake maxima for hydrogen adsorption isotherms in frameworks with rht topology. Chemical Communications, 2012, 48, 10496.	2.2	50
331	Facile one-step solid-phase synthesis of multitopic organic–DNA hybrids via "click―chemistry. Chemical Science, 2014, 5, 1091-1096.	3.7	50
332	Single-Crystal Polycationic Polymers Obtained by Single-Crystal-to-Single-Crystal Photopolymerization. Journal of the American Chemical Society, 2020, 142, 6180-6187.	6.6	50
333	Selective Solvent-Assisted Linker Exchange (SALE) in a Series of Zeolitic Imidazolate Frameworks. Inorganic Chemistry, 2015, 54, 7142-7144.	1.9	49
334	Unprecedented selectivity in molecular recognition of carbohydrates by a metal–organic framework. Chemical Communications, 2016, 52, 7094-7097.	2.2	49
335	Near-instantaneous catalytic hydrolysis of organophosphorus nerve agents with zirconium-based MOF/hydrogel composites. Chem Catalysis, 2021, 1, 721-733.	2.9	49
336	Insights into the Structure–Activity Relationship in Aerobic Alcohol Oxidation over a Metal–Organic-Framework-Supported Molybdenum(VI) Catalyst. Journal of the American Chemical Society, 2021, 143, 4302-4310.	6.6	48
337	Two Azolium Rings Are Better Than One: A Strategy for Controlling Catenation and Morphology in Zn and Cu Metal–Organic Frameworks. Crystal Growth and Design, 2011, 11, 4747-4750.	1.4	47
338	Stabilization of a highly porous metal–organic framework utilizing a carborane-based linker. Chemical Communications, 2015, 51, 6521-6523.	2.2	47
339	Pore-Templated Growth of Catalytically Active Gold Nanoparticles within a Metal–Organic Framework. Chemistry of Materials, 2019, 31, 1485-1490.	3.2	47
340	Separation of Aromatic Hydrocarbons in Porous Materials. Journal of the American Chemical Society, 2022, 144, 12212-12218.	6.6	47
341	High propylene/propane adsorption selectivity in a copper(catecholate)-decorated porous organic polymer. Journal of Materials Chemistry A, 2014, 2, 299-302.	5.2	46
342	Proton Conducting Self-Assembled Metal–Organic Framework/Polyelectrolyte Hollow Hybrid Nanostructures. ACS Applied Materials & Interfaces, 2016, 8, 23015-23021.	4.0	46

#	Article	IF	CITATIONS
343	Photodriven Oxidation of Surface-Bound Iridium-Based Molecular Water-Oxidation Catalysts on Perylene-3,4-dicarboximide-Sensitized TiO ₂ Electrodes Protected by an Al ₂ O ₃ Layer. Journal of Physical Chemistry C, 2017, 121, 3752-3764.	1.5	46
344	Thermal Conductivity of ZIF-8 Thin-Film under Ambient Gas Pressure. ACS Applied Materials & Interfaces, 2017, 9, 28139-28143.	4.0	46
345	A MOF platform for incorporation of complementary organic motifs for CO ₂ binding. Chemical Communications, 2015, 51, 12478-12481.	2.2	45
346	Atomic Layer Deposition of Ultrathin Nickel Sulfide Films and Preliminary Assessment of Their Performance as Hydrogen Evolution Catalysts. Langmuir, 2016, 32, 12005-12012.	1.6	45
347	One Electron Changes Everything. A Multispecies Copper Redox Shuttle for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 3731-3740.	1.5	45
348	Atomic Layer Deposition in a Metal–Organic Framework: Synthesis, Characterization, and Performance of a Solid Acid. Chemistry of Materials, 2017, 29, 1058-1068.	3.2	45
349	Insights into Catalytic Hydrolysis of Organophosphonates at M–OH Sites of Azolate-Based Metal Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 9893-9900.	6.6	45
350	Chemically Engineered Porous Molecular Coatings as Reactive Oxygen Species Generators and Reservoirs for Longâ€Lasting Selfâ€Cleaning Textiles. Angewandte Chemie - International Edition, 2022, 61, e202115956.	7.2	45
351	Layer-by-Layer Assembled Films of Perylene Diimide- and Squaraine-Containing Metal–Organic Framework-like Materials: Solar Energy Capture and Directional Energy Transfer. ACS Applied Materials & Interfaces, 2016, 8, 24983-24988.	4.0	44
352	Design and Synthesis of a Waterâ€Stable Anionic Uraniumâ€Based Metal–Organic Framework (MOF) with Ultra Large Pores. Angewandte Chemie, 2016, 128, 10514-10518.	1.6	44
353	Site-Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework. ACS Applied Materials & Interfaces, 2018, 10, 15073-15078.	4.0	44
354	Epitaxial Growth of γ-Cyclodextrin-Containing Metal–Organic Frameworks Based on a Host–Guest Strategy. Journal of the American Chemical Society, 2018, 140, 11402-11407.	6.6	44
355	Interplay of Lewis and BrÃ,nsted Acid Sites in Zr-Based Metal–Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid. ACS Applied Materials & Interfaces, 2019, 11, 32090-32096.	4.0	44
356	Effective Panchromatic Sensitization of Electrochemical Solar Cells: Strategy and Organizational Rules for Spatial Separation of Complementary Light Harvesters on High-Area Photoelectrodes. Journal of the American Chemical Society, 2012, 134, 19820-19827.	6.6	43
357	Design, Synthesis, Characterization, and Catalytic Properties of a Large-Pore Metal-Organic Framework Possessing Single-Site Vanadyl(monocatecholate) Moieties. Crystal Growth and Design, 2013, 13, 3528-3534.	1.4	43
358	Post-Assembly Atomic Layer Deposition of Ultrathin Metal-Oxide Coatings Enhances the Performance of an Organic Dye-Sensitized Solar Cell by Suppressing Dye Aggregation. ACS Applied Materials & Interfaces, 2015, 7, 5150-5159.	4.0	43
359	Heterogeneous Metal-Free Hydrogenation over Defect-Laden Hexagonal Boron Nitride. ACS Omega, 2016, 1, 1343-1354.	1.6	43
360	Postassembly Transformation of a Catalytically Active Composite Material, Pt@ZIF-8, via Solvent-Assisted Linker Exchange. Inorganic Chemistry, 2016, 55, 1361-1363.	1.9	43

#	Article	IF	CITATIONS
361	Bifunctional Porphyrin-Based Nano-Metal–Organic Frameworks: Catalytic and Chemosensing Studies. Inorganic Chemistry, 2018, 57, 3855-3864.	1.9	43
362	Synthesis and functionalization of phase-pure NU-901 for enhanced CO ₂ adsorption: the influence of a zirconium salt and modulator on the topology and phase purity. CrystEngComm, 2018, 20, 7066-7070.	1.3	43
363	Adsorptive removal of Sb(V) from water using a mesoporous Zr-based metal–organic framework. Polyhedron, 2018, 151, 338-343.	1.0	43
364	Unprecedented Radiation Resistant Thorium–Binaphthol Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 13299-13304.	6.6	43
365	Intramolecular Energy and Electron Transfer within a Diazaperopyrenium-Based Cyclophane. Journal of the American Chemical Society, 2017, 139, 4107-4116.	6.6	42
366	Facile and Scalable Coating of Metal–Organic Frameworks on Fibrous Substrates by a Coordination Replication Method at Room Temperature. ACS Applied Materials & Interfaces, 2019, 11, 22714-22721.	4.0	42
367	Real-Time in Situ Monitoring of Particle and Structure Evolution in the Mechanochemical Synthesis of UiO-66 Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 49-54.	1.4	42
368	Water Sorption Evolution Enabled by Reticular Construction of Zirconium Metal–Organic Frameworks Based on a Unique [2.2]Paracyclophane Scaffold. Journal of the American Chemical Society, 2022, 144, 1826-1834.	6.6	42
369	Crystal to Crystal Guest Exchange in a Mixed Ligand Metalâ^'Organic Framework. Crystal Growth and Design, 2009, 9, 4588-4591.	1.4	41
370	Structural Features of Zirconium-Based Metal–Organic Frameworks Affecting Radiolytic Stability. Industrial & Engineering Chemistry Research, 2020, 59, 7520-7526.	1.8	41
371	Allomelanin: A Biopolymer of Intrinsic Microporosity. Journal of the American Chemical Society, 2021, 143, 4005-4016.	6.6	41
372	Oxygenâ€Assisted Cathodic Deposition of Zeolitic Imidazolate Frameworks with Controlled Thickness. Angewandte Chemie - International Edition, 2019, 58, 1123-1128.	7.2	40
373	Insights into the Structure–Activity Relationships in Metal–Organic Framework-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catalysis, 2020, 10, 8995-9005.	5.5	40
374	Removal of airborne toxic chemicals by porous organic polymers containing metal–catecholates. Chemical Communications, 2013, 49, 2995.	2.2	39
375	Metal–Organic-Framework-Supported and -Isolated Ceria Clusters with Mixed Oxidation States. ACS Applied Materials & Interfaces, 2019, 11, 47822-47829.	4.0	39
376	Solvent-assisted linker exchange enabled preparation of cerium-based metal–organic frameworks constructed from redox active linkers. Inorganic Chemistry Frontiers, 2020, 7, 984-990.	3.0	39
377	SiO2 Aerogel Templated, Porous TiO2 Photoanodes for Enhanced Performance in Dye-Sensitized Solar Cells Containing a Ni(III)/(IV) Bis(dicarbollide) Shuttle. Journal of Physical Chemistry C, 2011, 115, 11257-11264.	1.5	38
378	Size effect of the active sites in UiO-66-supported nickel catalysts synthesized via atomic layer deposition for ethylene hydrogenation. Inorganic Chemistry Frontiers, 2017, 4, 820-824.	3.0	38

#	Article	IF	CITATIONS
379	Stabilization of an Unprecedented Hexanuclear Secondary Building Unit in a Thorium-Based Metal–Organic Framework. Inorganic Chemistry, 2019, 58, 3586-3590.	1.9	38
380	Reactive Porous Polymers for Detoxification of a Chemical Warfare Agent Simulant. Chemistry of Materials, 2020, 32, 9299-9306.	3.2	38
381	Advancement of Actinide Metal–Organic Framework Chemistry via Synthesis of Pu-UiO-66. Journal of the American Chemical Society, 2020, 142, 9363-9371.	6.6	38
382	Pt@ZIF-8 composite for the regioselective hydrogenation of terminal unsaturations in 1,3-dienes and alkynes. Inorganic Chemistry Frontiers, 2015, 2, 448-452.	3.0	37
383	Photoexcited Naphthalene Diimide Radical Anion Linking the Nodes of a Metal–Organic Framework: A Heterogeneous Super-reductant. Chemistry of Materials, 2018, 30, 2488-2492.	3.2	37
384	Successful Decontamination of ⁹⁹ TcO ₄ ^{â^'} in Groundwater at Legacy Nuclear Sites by a Cationic Metalâ€Organic Framework with Hydrophobic Pockets. Angewandte Chemie, 2019, 131, 5022-5026.	1.6	37
385	Benign Integration of a Zn-Azolate Metal–Organic Framework onto Textile Fiber for Ammonia Capture. ACS Applied Materials & Interfaces, 2020, 12, 47747-47753.	4.0	37
386	Process-level modelling and optimization to evaluate metal–organic frameworks for post-combustion capture of CO ₂ . Molecular Systems Design and Engineering, 2020, 5, 1205-1218.	1.7	37
387	Ultrafine Silver Nanoparticle Encapsulated Porous Molecular Traps for Discriminative Photoelectrochemical Detection of Mustard Gas Simulants by Synergistic Sizeâ€Exclusion and Siteâ€Specific Recognition. Advanced Materials, 2022, 34, .	11.1	37
388	Supercritical Carbon Dioxide Enables Rapid, Clean, and Scalable Conversion of a Metal Oxide into Zeolitic Metal–Organic Frameworks. Crystal Growth and Design, 2018, 18, 3222-3228.	1.4	36
389	Assembly of a Porous Supramolecular Polyknot from Rigid Trigonal Prismatic Building Blocks. Journal of the American Chemical Society, 2019, 141, 12998-13002.	6.6	36
390	In Situ Formation of Unprecedented Neptunium-Oxide Wheel Clusters Stabilized in a Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 11842-11846.	6.6	36
391	A Flexible Interpenetrated Zirconiumâ€Based Metal–Organic Framework with High Affinity toward Ammonia. ChemSusChem, 2020, 13, 1710-1714.	3.6	36
392	Designing Porous Materials to Resist Compression: Mechanical Reinforcement of a Zr-MOF with Structural Linkers. Chemistry of Materials, 2020, 32, 3545-3552.	3.2	36
393	Ammonia Capture within Zirconium Metal–Organic Frameworks: Reversible and Irreversible Uptake. ACS Applied Materials & Interfaces, 2021, 13, 20081-20093.	4.0	36
394	Rapid, Biomimetic Degradation of a Nerve Agent Simulant by Incorporating Imidazole Bases into a Metal–Organic Framework. ACS Catalysis, 2021, 11, 1424-1429.	5.5	36
395	Exceptional Fluorocarbon Uptake with Mesoporous Metal–Organic Frameworks for Adsorption-Based Cooling Systems. ACS Applied Energy Materials, 2018, 1, 5853-5858.	2.5	35
396	Photocatalytic Biocidal Coatings Featuring Zr ₆ Ti ₄ -Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 12192-12201.	6.6	35

#	Article	IF	CITATIONS
397	Effects of Adsorbed Pyridine Derivatives and Ultrathin Atomic-Layer-Deposited Alumina Coatings on the Conduction Band-Edge Energy of TiO ₂ and on Redox-Shuttle-Derived Dark Currents. Langmuir, 2013, 29, 806-814.	1.6	34
398	Chemoselective Hydrogenation of Crotonaldehyde Catalyzed by an Au@ZIFâ€8 Composite. ChemCatChem, 2016, 8, 855-860.	1.8	34
399	Complete furanics–sugar separations with metal–organic framework NU-1000. Chemical Communications, 2016, 52, 11791-11794.	2.2	34
400	Synthetic Control of Thorium Polyoxo-Clusters in Metal–Organic Frameworks toward New Thorium-Based Materials. ACS Applied Nano Materials, 2019, 2, 2260-2265.	2.4	34
401	Photon Upconversion in a Glowing Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 5053-5059.	6.6	34
402	An Electrically Conductive Tetrathiafulvalene-Based Hydrogen-Bonded Organic Framework. , 2022, 4, 128-135.		34
403	Introducing Perovskite Solar Cells to Undergraduates. Journal of Physical Chemistry Letters, 2015, 6, 251-255.	2.1	33
404	Boosting Transport Distances for Molecular Excitons within Photoexcited Metal–Organic Framework Films. ACS Applied Materials & Interfaces, 2018, 10, 34409-34417.	4.0	33
405	Efficient extraction of inorganic selenium from water by a Zr metal–organic framework: investigation of volumetric uptake capacity and binding motifs. CrystEngComm, 2018, 20, 6140-6145.	1.3	33
406	Metal–Organic Frameworks with Metal–Catecholates for O ₂ /N ₂ Separation. Journal of Physical Chemistry C, 2019, 123, 12935-12946.	1.5	33
407	Water-Based Synthesis of a Stable Iron-Based Metal–Organic Framework for Capturing Toxic Gases. , 2020, 2, 1129-1134.		33
408	Are you using the right probe molecules for assessing the textural properties of metal–organic frameworks?. Journal of Materials Chemistry A, 2021, 10, 157-173.	5.2	33
409	Detoxification of a Mustard-Gas Simulant by Nanosized Porphyrin-Based Metal–Organic Frameworks. ACS Applied Nano Materials, 2019, 2, 465-469.	2.4	32
410	The Synthesis Science of Targeted Vapor-Phase Metal–Organic Framework Postmodification. Journal of the American Chemical Society, 2020, 142, 242-250.	6.6	32
411	Catalytic Degradation of an Organophosphorus Agent at Zn–OH Sites in a Metal–Organic Framework. Chemistry of Materials, 2020, 32, 6998-7004.	3.2	32
412	Two Large-Pore Metal–Organic Frameworks Derived from a Single Polytopic Strut. Crystal Growth and Design, 2012, 12, 1075-1080.	1.4	31
413	Torsion Angle Effect on the Activation of UiO Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 15788-15794.	4.0	31
414	Theoretical Prediction and Experimental Evaluation of Topological Landscape and Thermodynamic Stability of a Fluorinated Zeolitic Imidazolate Framework. Chemistry of Materials, 2019, 31, 3777-3783.	3.2	31

#	Article	IF	CITATIONS
415	Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO 2. Angewandte Chemie, 2019, 131, 7764-7768.	1.6	31
416	Tuning the Structural Flexibility for Multi-Responsive Gas Sorption in Isonicotinate-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 16820-16827.	4.0	31
417	Leveraging Chiral Zr(IV)-Based Metal–Organic Frameworks To Elucidate Catalytically Active Rh Species in Asymmetric Hydrogenation Reactions. Journal of the American Chemical Society, 2022, 144, 3117-3126.	6.6	31
418	A Convenient Route to High Area, Nanoparticulate TiO ₂ Photoelectrodes Suitable for High-Efficiency Energy Conversion in Dye-Sensitized Solar Cells. Langmuir, 2011, 27, 1996-1999.	1.6	30
419	Phosphine Gas Adsorption in a Series of Metal–Organic Frameworks. Inorganic Chemistry, 2015, 54, 8162-8164.	1.9	30
420	Tuning the properties of metal–organic framework nodes as supports of single-site iridium catalysts: node modification by atomic layer deposition of aluminium. Faraday Discussions, 2017, 201, 195-206.	1.6	30
421	Topological Strain-Induced Regioselective Linker Elimination in a Chiral Zr(IV)-Based Metal-Organic Framework. CheM, 2021, 7, 190-201.	5.8	30
422	Synthetic Porous Melanin. Journal of the American Chemical Society, 2021, 143, 3094-3103.	6.6	30
423	Postsynthetically Modified Polymers of Intrinsic Microporosity (PIMs) for Capturing Toxic Gases. ACS Applied Materials & Interfaces, 2021, 13, 10409-10415.	4.0	30
424	Catalytic Degradation of Polyethylene Terephthalate Using a Phaseâ€Transitional Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
425	γ-Cyclodextrin Cuprate Sandwich-Type Complexes. Inorganic Chemistry, 2013, 52, 2854-2861.	1.9	29
426	Towards hydroxamic acid linked zirconium metal–organic frameworks. Materials Chemistry Frontiers, 2017, 1, 1194-1199.	3.2	29
427	Vapor-Phase Fabrication and Condensed-Phase Application of a MOF-Node-Supported Iron Thiolate Photocatalyst for Nitrate Conversion to Ammonium. ACS Applied Energy Materials, 2019, 2, 8695-8700.	2.5	29
428	Linker Competition within a Metal–Organic Framework for Topological Insights. Inorganic Chemistry, 2019, 58, 1513-1517.	1.9	29
429	Guest-Dependent Single-Crystal-to-Single-Crystal Phase Transitions in a Two-Dimensional Uranyl-Based Metal–Organic Framework. Crystal Growth and Design, 2019, 19, 506-512.	1.4	29
430	Interpenetration Isomerism in Triptyceneâ€Based Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie, 2019, 131, 1678-1683.	1.6	29
431	Threeâ€Dimensional Architectures Incorporating Stereoregular Donor–Acceptor Stacks. Chemistry - A European Journal, 2013, 19, 8457-8465.	1.7	28
432	Metallacarborane-Based Metal–Organic Framework with a Complex Topology. Crystal Growth and Design, 2014, 14, 1324-1330.	1.4	28

#	Article	IF	CITATIONS
433	A dual approach to tuning the porosity of porous organic polymers: controlling the porogen size and supercritical CO ₂ processing. Chemical Science, 2014, 5, 782-787.	3.7	28
434	Fabrication of Transparent-Conducting-Oxide-Coated Inverse Opals as Mesostructured Architectures for Electrocatalysis Applications: A Case Study with NiO. ACS Applied Materials & Interfaces, 2014, 6, 12290-12294.	4.0	28
435	Elucidating the Nanoparticle–Metal Organic Framework Interface of Pt@ZIF-8 Catalysts. Journal of Physical Chemistry C, 2017, 121, 25079-25091.	1.5	28
436	Rational Design of Pore Size and Functionality in a Series of Isoreticular Zwitterionic Metal–Organic Frameworks. Chemistry of Materials, 2018, 30, 8332-8342.	3.2	28
437	Probing charge transfer characteristics in a donor–acceptor metal–organic framework by Raman spectroelectrochemistry and pressure-dependence studies. Physical Chemistry Chemical Physics, 2018, 20, 25772-25779.	1.3	28
438	Realization of Lithium-Ion Capacitors with Enhanced Energy Density via the Use of Gadolinium Hexacyanocobaltate as a Cathode Material. ACS Applied Materials & Interfaces, 2019, 11, 31799-31805.	4.0	28
439	Single-component frameworks for heterogeneous catalytic hydrolysis of organophosphorous compounds in pure water. Chemical Communications, 2019, 55, 7005-7008.	2.2	28
440	Transient Catenation in a Zirconium-Based Metal–Organic Framework and Its Effect on Mechanical Stability and Sorption Properties. Journal of the American Chemical Society, 2021, 143, 1503-1512.	6.6	28
441	Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 30565-30575.	4.0	28
442	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
443	Fabrication of Thin Films of α-Fe ₂ O ₃ via Atomic Layer Deposition Using Iron Bisamidinate and Water under Mild Growth Conditions. ACS Applied Materials & Interfaces, 2015, 7, 16138-16142.	4.0	27
444	MOFs and their grafted analogues: regioselective epoxide ring-opening with Zr ₆ nodes. Catalysis Science and Technology, 2016, 6, 6480-6484.	2.1	27
445	Highly Selective Acetylene Semihydrogenation Catalyzed by Cu Nanoparticles Supported in a Metal–Organic Framework. ACS Applied Nano Materials, 2018, 1, 4413-4417.	2.4	27
446	Proton Conduction in Tröger's Base-Linked Poly(crown ether)s. ACS Applied Materials & Interfaces, 2018, 10, 25303-25310.	4.0	27
447	Toward Design Rules of Metal–Organic Frameworks for Adsorption Cooling: Effect of Topology on the Ethanol Working Capacity. Chemistry of Materials, 2019, 31, 2702-2706.	3.2	27
448	Zirconium Metal–Organic Frameworks Integrating Chloride Ions for Ammonia Capture and/or Chemical Separation. ACS Applied Materials & Interfaces, 2021, 13, 22485-22494.	4.0	27
449	Impact of the strength and spatial distribution of adsorption sites on methane deliverable capacity in nanoporous materials. Chemical Engineering Science, 2017, 159, 18-30.	1.9	26
450	Tunable Crystallinity and Charge Transfer in Twoâ€Dimensional Gâ€Quadruplex Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 3985-3989.	7.2	26

#	Article	IF	CITATIONS
451	Pd modified prussian blue frameworks: Multiple electron transfer pathways for improving catalytic activity toward hydrogenation of nitroaromatics. Molecular Catalysis, 2020, 492, 110967.	1.0	26
452	Stabilization of Photocatalytically Active Uranyl Species in a Uranyl–Organic Framework for Heterogeneous Alkane Fluorination Driven by Visible Light. Inorganic Chemistry, 2020, 59, 16795-16798.	1.9	26
453	Organic Counteranion Co-assembly Strategy for the Formation of Î ³ -Cyclodextrin-Containing Hybrid Frameworks. Journal of the American Chemical Society, 2020, 142, 2042-2050.	6.6	26
454	Reticular exploration of uranium-based metal—organic frameworks with hexacarboxylate building units. Nano Research, 2021, 14, 376-380.	5.8	25
455	Mechanically Enhanced Catalytic Reduction of Carbon Dioxide over Defect Hexagonal Boron Nitride. ACS Sustainable Chemistry and Engineering, 2021, 9, 2447-2455.	3.2	25
456	Isomer of linker for NU-1000 yields a new she -type, catalytic, and hierarchically porous, Zr-based metal–organic framework. Chemical Communications, 2021, 57, 3571-3574.	2.2	25
457	Modulating Chemical Environments of Metal–Organic Framework-Supported Molybdenum(VI) Catalysts for Insights into the Structure–Activity Relationship in Cyclohexene Epoxidation. Journal of the American Chemical Society, 2022, 144, 3554-3563.	6.6	25
458	Metal–Organic Frameworks Containing (Alkynyl)Gold Functionalities: A Comparative Evaluation of Solvent-Assisted Linker Exchange, <i>de Novo</i> Synthesis, and Post-synthesis Modification. Crystal Growth and Design, 2014, 14, 6320-6324.	1.4	24
459	Enhanced Gas Sorption Properties and Unique Behavior toward Liquid Water in a Pillared-Paddlewheel Metal–Organic Framework Transmetalated with Ni(II). Inorganic Chemistry, 2014, 53, 10432-10436.	1.9	24
460	Atomic Layer Deposition of Rhenium–Aluminum Oxide Thin Films and ReO _{<i>x</i>} Incorporation in a Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 35067-35074.	4.0	24
461	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Angewandte Chemie, 2018, 130, 1967-1971.	1.6	24
462	Green Synthesis of a Functionalized Zirconium-Based Metal–Organic Framework for Water and Ethanol Adsorption. Inorganics, 2019, 7, 56.	1.2	24
463	Zr ₆ O ₈ Node-Catalyzed Butene Hydrogenation and Isomerization in the Metal–Organic Framework NU-1000. ACS Catalysis, 2020, 10, 14959-14970.	5.5	24
464	Isolating the Role of the Node-Linker Bond in the Compression of UiO-66 Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 5864-5871.	3.2	24
465	Theoretical insights into direct methane to methanol conversion over supported dicopper oxo nanoclusters. Catalysis Today, 2018, 312, 2-9.	2.2	23
466	Electroactive Ferrocene at or near the Surface of Metal–Organic Framework UiO-66. Langmuir, 2018, 34, 4707-4714.	1.6	23
467	A Hierarchical Nanoporous Diamondoid Superstructure. CheM, 2019, 5, 2353-2364.	5.8	23
468	Supramolecular Porous Assemblies of Atomically Precise Catalytically Active Cerium-Based Clusters. Chemistry of Materials, 2020, 32, 8522-8529.	3.2	23

#	Article	IF	CITATIONS
469	Direct Observation of Modulated Radical Spin States in Metal–Organic Frameworks by Controlled Flexibility. Journal of the American Chemical Society, 2022, 144, 2685-2693.	6.6	23
470	Luminescent infinite coordination polymer materials from metal-terpyridine ligation. Dalton Transactions, 2011, 40, 9189.	1.6	22
471	Evaluation of a robust, diimide-based, porous organic polymer (POP) as a high-capacity sorbent for representative chemical threats. Journal of Porous Materials, 2012, 19, 261-266.	1.3	22
472	Tuning the Hydrophobicity of Zinc Dipyridyl Paddlewheel Metal–Organic Frameworks for Selective Sorption. Crystal Growth and Design, 2013, 13, 2938-2942.	1.4	22
473	Enhancement of the Yield of Photoinduced Charge Separation in Zinc Porphyrin–Quantum Dot Complexes by a Bis(dithiocarbamate) Linkage. Journal of Physical Chemistry C, 2015, 119, 5195-5202.	1.5	22
474	Isothermal Titration Calorimetry to Investigate Uremic Toxins Adsorbing onto Metal-Organic Frameworks. Cell Reports Physical Science, 2020, 1, 100006.	2.8	22
475	Nanoporous Water-Stable Zr-Based Metal–Organic Frameworks for Water Adsorption. ACS Applied Nano Materials, 2021, 4, 4346-4350.	2.4	22
476	Mechanistic Insights into Nanoparticle Formation from Bimetallic Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 8976-8980.	6.6	22
477	Development of a Metal–Organic Framework/Textile Composite for the Rapid Degradation and Sensitive Detection of the Nerve Agent VX. Chemistry of Materials, 2022, 34, 1269-1277.	3.2	22
478	Liquidâ€Phase Epitaxially Grown Metal–Organic Framework Thin Films for Efficient Tandem Catalysis Through Siteâ€ I solation of Catalytic Centers. ChemPlusChem, 2016, 81, 708-713.	1.3	21
479	SALEâ€Ing a MOFâ€Based "Ship of Theseus.―Sequential Buildingâ€Block Replacement for Complete Reformulation of a Pillaredâ€Paddlewheel Metalâ€Organic Framework. European Journal of Inorganic Chemistry, 2016, 2016, 4345-4348.	1.0	21
480	CO ₂ Adsorption in M-IRMOF-10 (M = Mg, Ca, Fe, Cu, Zn, Ge, Sr, Cd, Sn, Ba). Journal of Physical Chemistry C, 2016, 120, 12819-12830.	1.5	21
481	Assembly of dicobalt and cobalt–aluminum oxide clusters on metal–organic framework and nanocast silica supports. Faraday Discussions, 2017, 201, 287-302.	1.6	21
482	Application and Limitations of Nanocasting in Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 2782-2790.	1.9	21
483	Stabilizing a Vanadium Oxide Catalyst by Supporting on a Metal–Organic Framework. ChemCatChem, 2018, 10, 1772-1777.	1.8	21
484	Fast Cyclohexane Oxidation Under Mild Reaction Conditions Through a Controlled Creation of Redoxâ€Active Fe(II/III) Sites in a Metalâ^'Organic Framework. ChemCatChem, 2019, 11, 5650-5656.	1.8	21
485	Tailorable Topologies for Selectively Controlling Crystals of Expanded Prussian Blue Analogues. Crystal Growth and Design, 2019, 19, 7385-7395.	1.4	21
486	Precise Control of Cu Nanoparticle Size and Catalytic Activity through Pore Templating in Zr Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 3078-3086.	3.2	21

#	Article	IF	CITATIONS
487	Single crystal structure and photocatalytic behavior of grafted uranyl on the Zr-node of a pyrene-based metal–organic framework. CrystEngComm, 2020, 22, 2097-2102.	1.3	21
488	The Molecular Path Approaching the Active Site in Catalytic Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 20090-20094.	6.6	21
489	Heterometallic Ce ^{IV} / V ^V Oxo Clusters with Adjustable Catalytic Reactivities. Journal of the American Chemical Society, 2021, 143, 21056-21065.	6.6	21
490	Magnetic Control of MOF Crystal Orientation and Alignment. Chemistry - A European Journal, 2017, 23, 15578-15582.	1.7	20
491	Maximizing Magnetic Resonance Contrast in Gd(III) Nanoconjugates: Investigation of Proton Relaxation in Zirconium Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 41157-41166.	4.0	20
492	Mechanistic Insights into C–H Borylation of Arenes with Organoiridium Catalysts Embedded in a Microporous Metal–Organic Framework. Organometallics, 2020, 39, 1123-1133.	1.1	20
493	Proton Conductivity via Trapped Water in Phosphonate-Based Metal–Organic Frameworks Synthesized in Aqueous Media. Inorganic Chemistry, 2021, 60, 1086-1091.	1.9	20
494	Highly Specific Coordination-Driven Self-Assembly of 2D Heterometallic Metal–Organic Frameworks with Unprecedented Johnson-type (<i>J</i> ₅₁) Nonanuclear Zr-Oxocarboxylate Clusters. Journal of the American Chemical Society, 2021, 143, 657-663.	6.6	20
495	A zwitterionic metal–organic framework with free carboxylic acid sites that exhibits enhanced hydrogen adsorption energies. CrystEngComm, 2013, 15, 9408.	1.3	19
496	Porphyrins as Templates for Site-Selective Atomic Layer Deposition: Vapor Metalation and in Situ Monitoring of Island Growth. ACS Applied Materials & Interfaces, 2016, 8, 19853-19859.	4.0	19
497	Isobutane Dehydrogenation over Bulk and Supported Molybdenum Sulfide Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 1113-1122.	1.8	18
498	Cyclohexene epoxidation with H ₂ O ₂ in the vapor and liquid phases over a vanadium-based metal–organic framework. Catalysis Science and Technology, 2020, 10, 4580-4585.	2.1	18
499	Anisotropic Synthetic Allomelanin Materials via Solid‣tate Polymerization of Selfâ€Assembled 1,8â€Đihydroxynaphthalene Dimers. Angewandte Chemie - International Edition, 2021, 60, 17464-17471.	7.2	18
500	Investigating the Influence of Hexanuclear Clusters in Isostructural Metal–Organic Frameworks on Toxic Gas Adsorption. ACS Applied Materials & Interfaces, 2022, 14, 3048-3056.	4.0	18
501	Metal organic framework-based nanostructure materials: applications for non-lithium ion battery electrodes. CrystEngComm, 2022, 24, 2925-2947.	1.3	18
502	Mechanically interlocked pyrene-based photocatalysts. Nature Catalysis, 2022, 5, 524-533.	16.1	18
503	High-Surface-Area Architectures for Improved Charge Transfer Kinetics at the Dark Electrode in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 8646-8650.	4.0	17
504	Modular Synthesis of Highly Porous Zr-MOFs Assembled from Simple Building Blocks for Oxygen Storage. ACS Applied Materials & Interfaces, 2019, 11, 42179-42185.	4.0	17

#	Article	IF	CITATIONS
505	Modulation of crystal growth and structure within cerium-based metal–organic frameworks. CrystEngComm, 2020, 22, 8182-8188.	1.3	17
506	Vapor-Phase Cyclohexene Epoxidation by Single-Ion Fe(III) Sites in Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 2457-2463.	1.9	17
507	Regioselective Functionalization of the Mesoporous Metal–Organic Framework, NU-1000, with Photo-Active Tris-(2,2′-bipyridine)ruthenium(II). ACS Omega, 2020, 5, 30299-30305.	1.6	17
508	Understanding Diffusional Charge Transport within a Pyrene-Based Hydrogen-Bonded Organic Framework. Langmuir, 2022, 38, 1533-1539.	1.6	17
509	Powered by porphyrin packing. Nature Materials, 2015, 14, 1192-1193.	13.3	16
510	Calcium Vapor Adsorption on the Metal–Organic Framework NU-1000: Structure and Energetics. Journal of Physical Chemistry C, 2016, 120, 16850-16862.	1.5	16
511	Ni(ii) complex on a bispyridine-based porous organic polymer as a heterogeneous catalyst for ethylene oligomerization. Catalysis Science and Technology, 2017, 7, 4351-4354.	2.1	16
512	Nickel–Carbon–Zirconium Material Derived from Nickel-Oxide Clusters Installed in a Metal–Organic Framework Scaffold by Atomic Layer Deposition. Langmuir, 2018, 34, 14143-14150.	1.6	16
513	Mechanistic Study on the Origin of the <i>Trans</i> Selectivity in Alkyne Semihydrogenation by a Heterobimetallic Rhodium–Gallium Catalyst in a Metal–Organic Framework. Organometallics, 2019, 38, 3466-3473.	1.1	16
514	Molybdenum Sulfide within a Metal–Organic Framework for Photocatalytic Hydrogen Evolution from Water. Journal of the Electrochemical Society, 2019, 166, H3154-H3158.	1.3	16
515	Structural reversibility of Cu doped NU-1000 MOFs under hydrogenation conditions. Journal of Chemical Physics, 2020, 152, 084703.	1.2	16
516	Demonstrating the Critical Role of Solvation in Supported Ti and Nb Epoxidation Catalysts via Vapor-Phase Kinetics. ACS Catalysis, 2020, 10, 2817-2825.	5.5	16
517	Time-Resolved <i>in Situ</i> Polymorphic Transformation from One 12-Connected Zr-MOF to Another. , 2020, 2, 499-504.		16
518	Unusual Metal–Organic Framework Topology and Radiation Resistance through Neptunyl Coordination Chemistry. Journal of the American Chemical Society, 2021, 143, 17354-17359.	6.6	16
519	Linker Contribution toward Stability of Metal–Organic Frameworks under Ionizing Radiation. Chemistry of Materials, 2021, 33, 9285-9294.	3.2	16
520	Insights into Mass Transfer Barriers in Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 4134-4141.	3.2	16
521	Dynamics of Back Electron Transfer in Dye-Sensitized Solar Cells Featuring 4- <i>tert</i> -Butyl-Pyridine and Atomic-Layer-Deposited Alumina as Surface Modifiers. Journal of Physical Chemistry B, 2015, 119, 7162-7169.	1.2	15
522	Toward a Charged Homo[2]catenane Employing Diazaperopyrenium Homophilic Recognition. Journal of the American Chemical Society, 2018, 140, 6540-6544.	6.6	15

#	Article	IF	CITATIONS
523	Isomerization and Selective Hydrogenation of Propyne: Screening of Metal–Organic Frameworks Modified by Atomic Layer Deposition. Journal of the American Chemical Society, 2020, 142, 20380-20389.	6.6	15
524	Stabilization of an enzyme cytochrome c in a metal-organic framework against denaturing organic solvents. IScience, 2021, 24, 102641.	1.9	15
525	Surviving Under Pressure: The Role of Solvent, Crystal Size, and Morphology During Pelletization of Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 52106-52112.	4.0	15
526	Synthesis of a homotrifunctional conjugation reagent based on maleimide chemistry. Tetrahedron Letters, 2006, 47, 2619-2622.	0.7	14
527	Determining the Conduction Band-Edge Potential of Solar-Cell-Relevant Nb ₂ O ₅ Fabricated by Atomic Layer Deposition. Langmuir, 2017, 33, 9298-9306.	1.6	14
528	Catalytically Active Silicon Oxide Nanoclusters Stabilized in a Metal–Organic Framework. Chemistry - A European Journal, 2017, 23, 8532-8536.	1.7	14
529	Insights into Supramolecular Sites Responsible for Complete Separation of Biomass-Derived Phenolics and Glucose in Metal–Organic Framework NU-1000. Langmuir, 2017, 33, 4129-4137.	1.6	14
530	Catalysis in MOFs: general discussion. Faraday Discussions, 2017, 201, 369-394.	1.6	14
531	Bottom-Up Design and Generation of Complex Structures: A New Twist in Reticular Chemistry. Crystal Growth and Design, 2018, 18, 449-455.	1.4	14
532	High Propane and Isobutane Adsorption Cooling Capacities in Zirconium-Based Metal–Organic Frameworks Predicted by Molecular Simulations. ACS Sustainable Chemistry and Engineering, 2019, 7, 18242-18246.	3.2	14
533	Air oxidation of sulfur mustard gas simulants using a pyrene-based metal–organic framework photocatalyst. Beilstein Journal of Nanotechnology, 2019, 10, 2422-2427.	1.5	14
534	Influence of spin state and electron configuration on the active site and mechanism for catalytic hydrogenation on metal cation catalysts supported on NU-1000: insights from experiments and microkinetic modeling. Catalysis Science and Technology, 2020, 10, 3594-3602.	2.1	14
535	A Catalytically Accessible Polyoxometalate in a Porous Fiber for Degradation of a Mustard Gas Simulant. ACS Applied Materials & Interfaces, 2022, 14, 16687-16693.	4.0	14
536	Leveraging Isothermal Titration Calorimetry to Obtain Thermodynamic Insights into the Binding Behavior and Formation of Metal–Organic Frameworks. Langmuir, 2022, 38, 6771-6779.	1.6	14
537	Leveraging Nitrogen Linkages in the Formation of a Porous Thorium–Organic Nanotube Suitable for Iodine Capture. Inorganic Chemistry, 2022, 61, 9480-9492.	1.9	14
538	Hot Press Synthesis of MOF/Textile Composites for Nerve Agent Detoxification. , 2022, 4, 1511-1515.		14
539	Combining solvent-assisted linker exchange and transmetallation strategies to obtain a new non-catenated nickel (II) pillared-paddlewheel MOF. Inorganic Chemistry Communication, 2016, 67, 60-63.	1.8	13
540	Enhancing Four-Carbon Olefin Production from Acetylene over Copper Nanoparticles in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 31496-31502.	4.0	13

#	Article	IF	CITATIONS
541	An Amidoxime-Functionalized Porous Reactive Fiber against Toxic Chemicals. , 2021, 3, 320-326.		13
542	Benign Synthesis and Modification of a Zn–Azolate Metal–Organic Framework for Enhanced Ammonia Uptake and Catalytic Hydrolysis of an Organophosphorus Chemical. , 2021, 3, 1363-1368.		13
543	Epoxidation of the Commercially Relevant Divinylbenzene with [<i>tetrakis</i> -(Pentafluorophenyl)porphyrinato]iron(III) Chloride and Its Derivatives. Industrial & Engineering Chemistry Research, 2015, 54, 922-927.	1.8	12
544	Singleâ€Site, Singleâ€Metalâ€Atom, Heterogeneous Electrocatalyst: Metal–Organicâ€Framework Supported Molybdenum Sulfide for Redox Mediatorâ€Assisted Hydrogen Evolution Reaction. ChemElectroChem, 2020, 7, 509-516.	1.7	12
545	A contorted nanographene shelter. Nature Communications, 2021, 12, 5191.	5.8	12
546	An exceptionally high boron content supramolecular cuboctahedron. Chemical Communications, 2013, 49, 11485.	2.2	11
547	Restricting Polyoxometalate Movement Within Metal-Organic Frameworks to Assess the Role of Residual Water in Catalytic Thioether Oxidation Using These Dynamic Composites. Frontiers in Materials, 2019, 6, .	1.2	11
548	Cross-linked porous polyurethane materials featuring dodecaborate clusters as inorganic polyol equivalents. Chemical Communications, 2019, 55, 8852-8855.	2.2	11
549	Tuning the Atrazine Binding Sites in an Indium-Based Flexible Metal–Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 44762-44768.	4.0	11
550	Control of the Porosity in Manganese Trimer-Based Metal–Organic Frameworks by Linker Functionalization. Inorganic Chemistry, 2020, 59, 8444-8450.	1.9	11
551	Squeezing the box: isoreticular contraction of pyrene-based linker in a Zr-based metal–organic framework for Xe/Kr separation. Dalton Transactions, 2020, 49, 6553-6556.	1.6	11
552	Discovery of spontaneous de-interpenetration through charged point-point repulsions. CheM, 2022, 8, 225-242.	5.8	11
553	Polyhedral Boranes in the Nanoworld. ACS Symposium Series, 2005, , 312-324.	0.5	10
554	Tunable Crystallinity and Charge Transfer in Twoâ€Đimensional Gâ€Quadruplex Organic Frameworks. Angewandte Chemie, 2018, 130, 4049-4053.	1.6	10
555	Extending the Compositional Range of Nanocasting in the Oxozirconium Cluster-Based Metal–Organic Framework NU-1000—A Comparative Structural Analysis. Chemistry of Materials, 2018, 30, 1301-1315.	3.2	10
556	Electrostatic Purification of Mixed-Phase Metal–Organic Framework Nanoparticles. Chemistry of Materials, 2018, 30, 4877-4881.	3.2	10
557	Vibrational Paddlewheel Cu–Cu Node in Metal–Organic Frameworks: Probe of Nonradiative Relaxation. Journal of Physical Chemistry C, 2020, 124, 13187-13195.	1.5	10
558	Micropore environment regulation of zirconium MOFs for instantaneous hydrolysis of an organophosphorus chemical. Cell Reports Physical Science, 2021, 2, 100612.	2.8	10

#	Article	IF	CITATIONS
559	Rapid Quantification of Mass Transfer Barriers in Metal–Organic Framework Crystals. Chemistry of Materials, 0, , .	3.2	10
560	Rapid Generation of Metal–Organic Framework Phase Diagrams by High-Throughput Transmission Electron Microscopy. Journal of the American Chemical Society, 2022, 144, 6674-6680.	6.6	10
561	Barrier-Layer-Mediated Electron Transfer from Semiconductor Electrodes to Molecules in Solution: Sensitivity of Mechanism to Barrier-Layer Thickness. Journal of Physical Chemistry C, 2016, 120, 20922-20928.	1.5	9
562	Transport Diffusion of Linear Alkanes (C ₅ –C ₁₆) through Thin Films of ZIF-8 as Assessed by Quartz Crystal Microgravimetry. Langmuir, 2021, 37, 9405-9414.	1.6	9
563	Catalysis at the Organic Ligands. RSC Catalysis Series, 2013, , 289-309.	0.1	8
564	Single-Atom Metal Oxide Sites as Traps for Charge Separation in the Zirconium-Based Metal–Organic Framework NDC–NU-1000. Energy & Fuels, 0, , .	2.5	8
565	Heteroatom-Doped Porous Carbons as Effective Adsorbers for Toxic Industrial Gasses. ACS Applied Materials & Interfaces, 2022, 14, 33173-33180.	4.0	8
566	Research Update: A hafnium-based metal-organic framework as a catalyst for regioselective ring-opening of epoxides with a mild hydride source. APL Materials, 2014, 2, .	2.2	7
567	Cyclotris(paraquatâ€ <i>p</i> â€phenylenes). Angewandte Chemie - International Edition, 2019, 58, 13778-13783.	7.2	7
568	Modulation of CO ₂ adsorption in novel pillar-layered MOFs based on carboxylate–pyrazole flexible linker. Dalton Transactions, 2021, 50, 2880-2890.	1.6	7
569	Simplifying and expanding the scope of boron imidazolate framework (BIF) synthesis using mechanochemistry. Chemical Science, 2021, 12, 14499-14506.	3.7	7
570	Regulation of Catenation in Metal–Organic Frameworks with Tunable Clathrochelate-Based Building Blocks. Crystal Growth and Design, 2021, 21, 6665-6670.	1.4	7
571	Aggregation-Suppressed Porous Processable Hexa-Zirconium/Polymer Composites for Detoxification of a Nerve Agent Simulant. Chemistry of Materials, 2022, 34, 4983-4991.	3.2	7
572	Magnetically recyclable nanocomposites via lanthanide-based MOFs grown on natural sea sponge: Screening hydrogenation of nitrophenol to aminophenol. Molecular Catalysis, 2022, 528, 112459.	1.0	7
573	Ethylene polymerization with a crystallographically well-defined metal–organic framework supported catalyst. Catalysis Science and Technology, 2022, 12, 1619-1627.	2.1	6
574	BODIPY-Based Polymers of Intrinsic Microporosity for the Photocatalytic Detoxification of a Chemical Threat. ACS Applied Materials & amp; Interfaces, 2022, 14, 12596-12605.	4.0	6
575	Mechanistic Investigation of Enhanced Catalytic Selectivity toward Alcohol Oxidation with Ce Oxysulfate Clusters. Journal of the American Chemical Society, 2022, 144, 12092-12101.	6.6	6
576	Enhancing the Catalytic Activity in the Solid State: Metal–Organic Frameworks to the Rescue. ACS Central Science, 2017, 3, 367-368.	5.3	5

#	Article	IF	CITATIONS
577	Thermochemical Investigation of Oxyanion Coordination in a Zirconium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2021, , .	4.0	5
578	Electron transitions in a Ce(iii)-catecholate metal–organic framework. Chemical Communications, 2022, 58, 525-528.	2.2	5
579	Oxygenâ€Assisted Cathodic Deposition of Zeolitic Imidazolate Frameworks with Controlled Thickness. Angewandte Chemie, 2019, 131, 1135-1140.	1.6	4
580	Effect of ionic liquid on sugar-aromatic separation selectivity by metal-organic framework NU-1000 in aqueous solution. Fuel Processing Technology, 2020, 197, 106189.	3.7	4
581	Catalytic Degradation of Polyethylene Terephthalate Using a Phaseâ€Transitional Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie, 2022, 134, .	1.6	4
582	Structural transformation of metal oxo species within UiO-66 type metal–organic frameworks. CrystEngComm, 2022, 24, 5135-5140.	1.3	4
583	Synthesis and Characterization of Functionalized Metal-organic Frameworks. Journal of Visualized Experiments, 2014, , e52094.	0.2	3
584	Engendering Long-Term Air and Light Stability of a TiO ₂ -Supported Porphyrinic Dye via Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2016, 8, 34863-34869.	4.0	3
585	Correction to "Tuning Zr ₆ Metal-Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts― ACS Catalysis, 2018, 8, 2364-2364.	5.5	3
586	Metal-organic frameworks for capture and detoxification of nerve agents. , 2019, , 179-202.		3
587	Illuminating a Practical Solution to Clothing Protection from Mustard Gas. Matter, 2020, 2, 286-287.	5.0	3
588	Sinterâ€Resistant Platinum Catalyst Supported by Metal–Organic Framework. Angewandte Chemie, 2018, 130, 921-925.	1.6	3
589	Chemically Engineered Porous Molecular Coatings as Reactive Oxygen Species Generators and Reservoirs for Longâ€Lasting Selfâ€Cleaning Textiles. Angewandte Chemie, 2022, 134, .	1.6	3
590	Correction to "Computationally Guided Discovery of Catalytic Cobalt-Decorated Metal–Organic Framework for Ethylene Dimerization― Journal of Physical Chemistry C, 2017, 121, 11975-11975.	1.5	2
591	Can Metal–Organic Framework Composites Contain the Water Contamination Crisis?. ACS Central Science, 2018, 4, 321-323.	5.3	2
592	Energy Selects. ACS Energy Letters, 2019, 4, 2021-2023.	8.8	2
593	Cyclotris(paraquat―p â€phenylenes). Angewandte Chemie, 2019, 131, 13916-13921.	1.6	2
594	Exchange of coordinated carboxylates with azolates as a route to obtain a microporous zinc–azolate framework. Chemical Communications, 2022, 58, 4028-4031.	2.2	2

#	Article	IF	CITATIONS
595	Interfacial Unit-Dependent Catalytic Activity for CO Oxidation over Cerium Oxysulfate Cluster Assemblies. ACS Applied Materials & Interfaces, 2022, 14, 33515-33524.	4.0	2
596	Adding to the Arsenal of Zirconium-Based Metal-Organic Frameworks:theTopology as a Platform for Solvent-Assisted Metal Incorporation. European Journal of Inorganic Chemistry, 2016, 2016, 4266-4266.	1.0	1
597	Precision in 3D. Nature Chemistry, 2017, 9, 299-301.	6.6	1
598	Nanomaterial Development, Characterization, and Integration Strategies for Chemical Warfare Defense. ACS Applied Materials & amp; Interfaces, 2020, 12, 14629-14630.	4.0	1
599	Coordination Chemistry in the Structural and Functional Exploration of Actinide-Based Metal-Organic Frameworks. Bulletin of Japan Society of Coordination Chemistry, 2020, 75, 3-12.	0.1	1
600	Forum on Materials and Interfaces for Energy Storage and Conversion. ACS Applied Materials & Interfaces, 2022, 14, 20303-20305.	4.0	1
601	Material and Interfaces for Energy-Related Applications: Hupp 60th Birthday Forum. ACS Applied Materials & Interfaces, 2017, 9, 33377-33378.	4.0	0
602	Frontispiece: Magnetic Control of MOF Crystal Orientation and Alignment. Chemistry - A European Journal, 2017, 23, .	1.7	0
603	New Talent 2018. CrystEngComm, 2018, 20, 5870-5871.	1.3	0
604	Anisotropic Synthetic Allomelanin Materials via Solidâ€State Polymerization of Selfâ€Assembled 1,8â€Dihydroxynaphthalene Dimers. Angewandte Chemie, 2021, 133, 17605-17612.	1.6	0
605	Titelbild: Anisotropic Synthetic Allomelanin Materials via Solidâ€State Polymerization of Selfâ€Assembled 1,8â€Dihydroxynaphthalene Dimers (Angew. Chem. 32/2021). Angewandte Chemie, 2021, 133, 17361-17361.	1.6	0
606	Forum on Emerging Materials for Catalysis and Energy Applications: In Memory of Professor Chia-Kuang (Frank) Tsung. ACS Applied Materials & Interfaces, 2021, 13, 51807-51808.	4.0	0
607	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie, 0, , .	1.6	0
608	Charge transfer in mixed and segregated stacks of tetrathiafulvalene, tetrathianaphthalene and naphthalene diimide: a structural, spectroscopic and computational study. New Journal of Chemistry, 0, , .	1.4	0