Vijay S Wadi

List of Publications by Citations

Source: https://exaly.com/author-pdf/7135359/vijay-s-wadi-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38 15 794 27 h-index g-index citations papers 38 5.2 4.07 943 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
38	Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. <i>Materials Letters</i> , 2012 , 80, 9-12	3.3	91
37	Facile synthesis of graphene oxide-silver nanocomposite and its modified electrode for enhanced electrochemical detection of nitrite ions. <i>Talanta</i> , 2015 , 144, 908-14	6.2	88
36	Simple and scalable preparation of reduced graphene oxidelilver nanocomposites via rapid thermal treatment. <i>Materials Letters</i> , 2012 , 89, 180-183	3.3	75
35	Preparation of highly water dispersible functional graphene/silver nanocomposite for the detection of melamine. <i>Sensors and Actuators B: Chemical</i> , 2013 , 181, 885-893	8.5	69
34	Hydrothermal synthesis of CuO/functionalized graphene nanocomposites for dye degradation. <i>Materials Letters</i> , 2013 , 93, 393-396	3.3	53
33	Core-shell Fe3O4-ZnO nanoparticles decorated on reduced graphene oxide for enhanced photoelectrochemical water splitting. <i>Ceramics International</i> , 2015 , 41, 5117-5128	5.1	46
32	Structureproperty relationships for partially aliphatic polyimides. <i>Journal of Polymer Research</i> , 2011 , 18, 1111-1117	2.7	37
31	High performance magnetically separable graphene/zinc oxide nanocomposite. <i>Materials Letters</i> , 2013 , 93, 411-414	3.3	34
30	An electroactive co-polymer as corrosion inhibitor for steel in sulphuric acid medium. <i>Applied Surface Science</i> , 2008 , 254, 5569-5573	6.7	31
29	Flexible sulfur film from inverse vulcanization technique. <i>Materials Letters</i> , 2017 , 203, 58-61	3.3	30
28	Super porous TiO photocatalyst: Tailoring the agglomerate porosity into robust structural mesoporosity with enhanced surface area for efficient remediation of azo dye polluted waste water. <i>Journal of Environmental Management</i> , 2020 , 258, 110029	7.9	29
27	Advanced TiO-SiO-Sulfur (Ti-Si-S) Nanohybrid Materials: Potential Adsorbent for the Remediation of Contaminated Wastewater. <i>ACS Applied Materials & District Remediation</i> , 11, 30247-30258	9.5	20
26	Ultrafast Stratified Diffusion of Water Inside Carbon Nanotubes; Direct Experimental Evidence with 2D DII 2 NMR Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 10600-10606	3.8	19
25	NMR and EPR Structural Analysis and Stability Study of Inverse Vulcanized Sulfur Copolymers. <i>ACS Omega</i> , 2018 , 3, 3330-3339	3.9	19
24	Preparation of robust, flexible, transparent films from partially aliphatic copolyimides. <i>Macromolecular Research</i> , 2015 , 23, 566-573	1.9	15
23	Copolymerization of N-vinyl pyrrolidone with functionalized vinyl monomers: Synthesis, characterization and reactivity relationships. <i>Macromolecular Research</i> , 2009 , 17, 1003-1009	1.9	15
22	Linear Sulfur Nylon Composites: Structure, Morphology, and Antibacterial Activity. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 198-208	4.3	12

(2022-2019)

21	Preparation and processing of porous sulfur foams having low thermal conductivity <i>RSC Advances</i> , 2019 , 9, 4397-4403	3.7	11	
20	Synthesis of 2D Germanane (GeH): a New, Fast, and Facile Approach. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 360-365	16.4	10	
19	Highly selective heavy metal ions membranes combining sulfonated polyethersulfone and self-assembled manganese oxide nanosheets on positively functionalized graphene oxide nanosheets. <i>Chemical Engineering Journal</i> , 2022 , 428, 131267	14.7	10	
18	Enhanced Mechanical Toughness of Isotactic Polypropylene Using Bulk Molybdenum Disulfide. <i>ACS Omega</i> , 2020 , 5, 11394-11401	3.9	8	
17	Microspheres of copolymeric N-vinylpyrrolidone and 2-ethoxyethyl methacrylate for the controlled release of nifedipine. <i>Journal of Polymer Research</i> , 2011 , 18, 359-366	2.7	8	
16	Nanoporous thin films of fully alicyclic polyimides. <i>Macromolecular Research</i> , 2011 , 19, 1272-1277	1.9	8	
15	Inverse vulcanized sulfurBycloalkene copolymers: Effect of ring size and unsaturation on thermal properties. <i>Materials Letters</i> , 2020 , 259, 126887	3.3	7	
14	Mercury removal by porous sulfur copolymers: Adsorption isotherm and kinetics studies. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 606, 125333	5.1	7	
13	Effect of unsymmetrical spiro dianhydride structure on properties of fully aliphatic polyimides. <i>High Performance Polymers</i> , 2012 , 24, 418-424	1.6	6	
12	Synthesis, characterization, and evaluation of copolymers based on N-isopropylacrylamide and 2-ethoxyethyl methacrylate for the controlled release of felodipine. <i>Journal of Applied Polymer Science</i> , 2008 , 110, 2211-2217	2.9	6	
11	Preparation and characterization of nanoporous thin films from fully aliphatic polyimides. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 6141-7	1.3	5	
10	Polypropylene/phosphazene nanotube nanocomposites: Thermal, mechanical, and flame retardation studies. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 49525	2.9	4	
9	Polypropylene E lemental Sulfur (S8) Composites: Effect of Sulfur on Morphological, Thermal, and Mechanical Properties. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 13079-13087	3.9	4	
8	Multiblock Copolymer Grafting for Butanol Biofuel Recovery by a Sustainable Membrane Process. <i>ACS Applied Materials & District Materia</i>	9.5	4	
7	Scalable High Refractive Index polystyrene-sulfur nanocomposites via in situ inverse vulcanization. <i>Scientific Reports</i> , 2020 , 10, 14924	4.9	3	
6	Sulfur-oleyl amine platelet derivatives with liquid crystalline behavior RSC Advances, 2018, 8, 41480-4	14,873	3	
5	Crystal and electronic facet analysis of ultrafine NiP particles by solid-state NMR nanocrystallography. <i>Nature Communications</i> , 2021 , 12, 4334	17.4	3	
4	Asymmetrical ultrafiltration membranes based on polylactic acid for the removal of organic substances from wastewater. <i>Journal of Water Process Engineering</i> , 2022 , 45, 102510	6.7	2	

3	Synthesis, characterization and evaluation of novel methoxypolyethyleneglycol- grafted-poly(ester-urethane)s for controlled release of repaglinide. <i>Journal of Applied Polymer Science</i> , 2009 , 113, 251-257	2.9	1
2	Development of green polylactic acid asymmetric ultrafiltration membranes for nutrient removal <i>Science of the Total Environment</i> , 2022 , 824, 153869	10.2	1
1	Synthesis of 2D Germanane (GeH): a New, Fast, and Facile Approach. <i>Angewandte Chemie</i> , 2021 , 133, 364-369	3.6	0