John P Moore

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7134529/john-p-moore-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 16,952 170 129 h-index g-index citations papers 6.75 19,506 14.6 200 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
170	Reappraising the Value of HIV-1 Vaccine Correlates of Protection Analyses <i>Journal of Virology</i> , 2022 , e0003422	6.6	1
169	Broad and ultra-potent cross-clade neutralization of HIV-1 by a vaccine-induced CD4 binding site bovine antibody <i>Cell Reports Medicine</i> , 2022 , 3, 100635	18	0
168	Structural dynamics reveal isolate-specific differences at neutralization epitopes on HIV Env. <i>IScience</i> , 2022 , 25, 104449	6.1	1
167	The glycan hole area of HIV-1 envelope trimers contributes prominently to the induction of autologous neutralization. <i>Journal of Virology</i> , 2021 , JVI0155221	6.6	2
166	Virus vaccines: proteins prefer prolines. <i>Cell Host and Microbe</i> , 2021 , 29, 327-333	23.4	25
165	Antibody responses to SARS-CoV-2 mRNA vaccines are detectable in saliva 2021,		14
164	SARS-CoV-2 Vaccines and the Growing Threat of Viral Variants. <i>JAMA - Journal of the American Medical Association</i> , 2021 , 325, 821-822	27.4	103
163	Immunogenicity of clinically relevant SARS-CoV-2 vaccines in nonhuman primates and humans. <i>Science Advances</i> , 2021 , 7,	14.3	64
162	Testing-on-a-probe biosensors reveal association of early SARS-CoV-2 total antibodies and surrogate neutralizing antibodies with mortality in COVID-19 patients. <i>Biosensors and Bioelectronics</i> , 2021 , 178, 113008	11.8	13
161	Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike. <i>Cell Reports</i> , 2021 , 35, 108933	10.6	11
160	Approaches for Optimal Use of Different COVID-19 Vaccines: Issues of Viral Variants and Vaccine Efficacy. <i>JAMA - Journal of the American Medical Association</i> , 2021 , 325, 1251-1252	27.4	33
159	Antibody Responses to SARS-CoV-2 mRNA Vaccines Are Detectable in Saliva. <i>Pathogens and Immunity</i> , 2021 , 6, 116-134	4.9	47
158	Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. <i>Npj Vaccines</i> , 2021 , 6, 24	9.5	8
157	Postconvalescent SARS-CoV-2 IgG and Neutralizing Antibodies are Elevated in Individuals with Poor Metabolic Health. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2021 , 106, e2025-e2034	5.6	14
156	Interplay of diverse adjuvants and nanoparticle presentation of native-like HIV-1 envelope trimers. <i>Npj Vaccines</i> , 2021 , 6, 103	9.5	1
155	Antibody responses induced by SHIV infection are more focused than those induced by soluble native HIV-1 envelope trimers in non-human primates. <i>PLoS Pathogens</i> , 2021 , 17, e1009736	7.6	3
154	Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. <i>Nature Communications</i> , 2021 , 12, 4817	17.4	8

153	Beta testing the monkey model. <i>Nature Immunology</i> , 2021 , 22, 1201-1203	19.1	
152	Emerging SARS-CoV-2 variants of concern evade humoral immune responses from infection and vaccination. <i>Science Advances</i> , 2021 , 7, eabj5365	14.3	26
151	Convalescent plasma-mediated resolution of COVID-19 in a patient with humoral immunodeficiency. <i>Cell Reports Medicine</i> , 2021 , 2, 100164	18	14
150	High-resolution mapping of the neutralizing and binding specificities of polyclonal sera post-HIV Env trimer vaccination. <i>ELife</i> , 2021 , 10,	8.9	3
149	T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. <i>Nature Medicine</i> , 2020 , 26, 932-940	50.5	60
148	COVID-19 Vaccines: "Warp Speed" Needs Mind Melds, Not Warped Minds. <i>Journal of Virology</i> , 2020 , 94,	6.6	63
147	Antibodies to SARS-CoV-2 and their potential for therapeutic passive immunization. <i>ELife</i> , 2020 , 9,	8.9	61
146	Env Exceptionalism: Why Are HIV-1 Env Glycoproteins Atypical Immunogens?. <i>Cell Host and Microbe</i> , 2020 , 27, 507-518	23.4	27
145	Neutralizing Antibody Induction by HIV-1 Envelope Glycoprotein SOSIP Trimers on Iron Oxide Nanoparticles May Be Impaired by Mannose Binding Lectin. <i>Journal of Virology</i> , 2020 , 94,	6.6	18
144	Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. <i>ELife</i> , 2020 , 9,	8.9	51
143	Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. <i>Journal of Virology</i> , 2020 , 94,	6.6	7
142	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. <i>PLoS Pathogens</i> , 2020 , 16, e1008665	7.6	25
141	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. <i>PLoS Pathogens</i> , 2020 , 16, e1008753	7.6	37
140	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens 2020 , 16, e1008665		
139	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens 2020 , 16, e1008665		
138	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens 2020 , 16, e1008665		
137	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens 2020 , 16, e1008665		
136	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates 2020 , 16, e1008753		_

135	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates 2020 , 16, e1008753		
134	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates 2020 , 16, e1008753		
133	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates 2020 , 16, e1008753		
132	Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. <i>Nature Communications</i> , 2019 , 10, 4272	17.4	80
131	Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. <i>Nature Communications</i> , 2019 , 10, 2355	17.4	68
130	Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies. <i>Cell Host and Microbe</i> , 2019 , 25, 873-883.e5	23.4	25
129	Optimizing the production and affinity purification of HIV-1 envelope glycoprotein SOSIP trimers from transiently transfected CHO cells. <i>PLoS ONE</i> , 2019 , 14, e0215106	3.7	7
128	Developability Assessment of Physicochemical Properties and Stability Profiles of HIV-1 BG505 SOSIP.664 and BG505 SOSIP.v4.1-GT1.1 gp140 Envelope Glycoprotein Trimers as Candidate Vaccine Antigens. <i>Journal of Pharmaceutical Sciences</i> , 2019 , 108, 2264-2277	3.9	11
127	Stabilization of the V2 loop improves the presentation of V2 loop-associated broadly neutralizing antibody epitopes on HIV-1 envelope trimers. <i>Journal of Biological Chemistry</i> , 2019 , 294, 5616-5631	5.4	14
126	Capturing the inherent structural dynamics of the HIV-1 envelope glycoprotein fusion peptide. <i>Nature Communications</i> , 2019 , 10, 763	17.4	13
125	Antibody Responses Elicited by Immunization with BG505 Trimer Immune Complexes. <i>Journal of Virology</i> , 2019 , 93,	6.6	9
124	SOS and IP Modifications Predominantly Affect the Yield but Not Other Properties of SOSIP.664 HIV-1 Env Glycoprotein Trimers. <i>Journal of Virology</i> , 2019 , 94,	6.6	3
123	Closing and Opening Holes in the Glycan Shield of HIV-1 Envelope Glycoprotein SOSIP Trimers Can Redirect the Neutralizing Antibody Response to the Newly Unmasked Epitopes. <i>Journal of Virology</i> , 2019 , 93,	6.6	50
122	Effects of Adjuvants on HIV-1 Envelope Glycoprotein SOSIP Trimers. Journal of Virology, 2018, 92,	6.6	26
121	Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. <i>Journal of Proteome Research</i> , 2018 , 17, 987-999	5.6	18
120	Immunogenicity in Rabbits of HIV-1 SOSIP Trimers from Clades A, B, and C, Given Individually, Sequentially, or in Combination. <i>Journal of Virology</i> , 2018 , 92,	6.6	50
119	Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins. <i>PLoS Pathogens</i> , 2018 , 14, e1006986	7.6	22
118	Site-Specific Glycosylation of Virion-Derived HIV-1 Env Is Mimicked by a Soluble Trimeric Immunogen. <i>Cell Reports</i> , 2018 , 24, 1958-1966.e5	10.6	89

(2016-2018)

117	Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. <i>PLoS Pathogens</i> , 2018 , 14, e1006913	7.6	78
116	Stabilization of the gp120 V3 loop through hydrophobic interactions reduces the immunodominant V3-directed non-neutralizing response to HIV-1 envelope trimers. <i>Journal of Biological Chemistry</i> , 2018 , 293, 1688-1701	5.4	26
115	cGMP production and analysis of BG505 SOSIP.664, an extensively glycosylated, trimeric HIV-1 envelope glycoprotein vaccine candidate. <i>Biotechnology and Bioengineering</i> , 2018 , 115, 885-899	4.9	56
114	Recognition of HIV-inactivating peptide triazoles by the recombinant soluble Env trimer, BG505 SOSIP.664. <i>Proteins: Structure, Function and Bioinformatics</i> , 2017 , 85, 843-851	4.2	5
113	Native-like Env trimers as a platform for HIV-1 vaccine design. <i>Immunological Reviews</i> , 2017 , 275, 161-1	82 1.3	166
112	Publishing: Journals, do your own formatting. <i>Nature</i> , 2017 , 542, 31	50.4	5
111	Glycosylation Benchmark Profile for HIV-1 Envelope Glycoprotein Production Based on Eleven Env Trimers. <i>Journal of Virology</i> , 2017 , 91,	6.6	65
110	Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers. <i>Journal of Virology</i> , 2017 , 91,	6.6	33
109	Improving the Expression and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers by Targeted Sequence Changes. <i>Journal of Virology</i> , 2017 , 91,	6.6	19
108	Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. <i>Cell Reports</i> , 2017 , 20, 1805-1817	10.6	112
107	Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. <i>Journal of Experimental Medicine</i> , 2017 , 214, 2573-2590	16.6	100
106	High-Throughput Protein Engineering Improves the Antigenicity and Stability of Soluble HIV-1 Envelope Glycoprotein SOSIP Trimers. <i>Journal of Virology</i> , 2017 , 91,	6.6	17
105	Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. <i>Nature</i> , 2017 , 547, 360-363	50.4	155
104	Molecular Architecture of the Cleavage-Dependent Mannose Patch on a Soluble HIV-1 Envelope Glycoprotein Trimer. <i>Journal of Virology</i> , 2017 , 91,	6.6	56
103	HIV-1-neutralizing antibody induced by simian adenovirus- and poxvirus MVA-vectored BG505 native-like envelope trimers. <i>PLoS ONE</i> , 2017 , 12, e0181886	3.7	13
102	Direct Probing of Germinal Center Responses Reveals Immunological Features and Bottlenecks for Neutralizing Antibody Responses to HIV Env Trimer. <i>Cell Reports</i> , 2016 , 17, 2195-2209	10.6	110
101	Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. <i>Journal of Virology</i> , 2016 , 90, 813-28	6.6	30
100	HIV-1 Envelope Trimer Design and Immunization Strategies To Induce Broadly Neutralizing Antibodies. <i>Trends in Immunology</i> , 2016 , 37, 221-232	14.4	78

99	Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. <i>Cell Reports</i> , 2016 , 14, 2695-706	10.6	193
98	An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. <i>Nature Microbiology</i> , 2016 , 2, 16199	26.6	103
97	Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C. <i>PLoS Pathogens</i> , 2016 , 12, e1005864	7.6	101
96	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. <i>PLoS Pathogens</i> , 2016 , 12, e1005763	7.6	167
95	Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E6639-E6648	11.5	164
94	HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers. <i>Science</i> , 2015 , 349, aac4223	33.3	394
93	Short Communication: Virion Aggregation by Neutralizing and Nonneutralizing Antibodies to the HIV-1 Envelope Glycoprotein. <i>AIDS Research and Human Retroviruses</i> , 2015 , 31, 1160-5	1.6	10
92	What Do Chaotrope-Based Avidity Assays for Antibodies to HIV-1 Envelope Glycoproteins Measure?. <i>Journal of Virology</i> , 2015 , 89, 5981-95	6.6	19
91	Comprehensive antigenic map of a cleaved soluble HIV-1 envelope trimer. <i>PLoS Pathogens</i> , 2015 , 11, e1004767	7.6	85
90	Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice. <i>Cell</i> , 2015 , 161, 150.	5 -51 652	197
89	A native-like SOSIP.664 trimer based on an HIV-1 subtype B env gene. Journal of Virology, 2015, 89, 338	0695	191
88	Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike. <i>Nature Communications</i> , 2015 , 6, 8167	17.4	62
87	Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity. <i>Journal of Virology</i> , 2015 , 89, 10383-98	6.6	105
86	Design and structure of two HIV-1 clade C SOSIP.664 trimers that increase the arsenal of native-like Env immunogens. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11947-52	11.5	97
85	Influences on the Design and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers. <i>Journal of Virology</i> , 2015 , 89, 12189-210	6.6	66
84	Binding of inferred germline precursors of broadly neutralizing HIV-1 antibodies to native-like envelope trimers. <i>Virology</i> , 2015 , 486, 116-20	3.6	32
83	Native Conformation and Canonical Disulfide Bond Formation Are Interlinked Properties of HIV-1 Env Glycoproteins. <i>Journal of Virology</i> , 2015 , 90, 2884-94	6.6	24
82	Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity. <i>Retrovirology</i> , 2015 , 12, 82	3.6	111

(2014-2015)

	A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo. <i>PLoS Pathogens</i> , 2015 , 11, e1005238	7.6	36
80	Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes. <i>Cell</i> , 2015 , 163, 1702-15	56.2	251
79	Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused on Accommodating or Avoiding Glycans. <i>Immunity</i> , 2015 , 43, 1053-63	32.3	170
78	Structural Constraints Determine the Glycosylation of HIV-1 Envelope Trimers. <i>Cell Reports</i> , 2015 , 11, 1604-13	10.6	101
77	Antibody potency relates to the ability to recognize the closed, pre-fusion form of HIV Env. <i>Nature Communications</i> , 2015 , 6, 6144	17.4	101
76	Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. <i>Nature</i> , 2014 , 509, 55-6	2 50.4	537
<i>75</i>	Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers. <i>Immunity</i> , 2014 , 40, 669-80	32.3	267
74	Refocussing Antibody Responses by Chemical Modification of Vaccine Antigens. <i>AIDS Research and Human Retroviruses</i> , 2014 , 30, A66-A67	1.6	
73	Structural evolution of glycan recognition by a family of potent HIV antibodies. <i>Cell</i> , 2014 , 159, 69-79	56.2	147
72	HIV: A stamp on the envelope. <i>Nature</i> , 2014 , 514, 437-8	50.4	24
		J° .4	,
71	Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. <i>Retrovirology</i> , 2014 , 11, 41	3.6	121
7 ¹			
	trimers, uncleaved Env proteins, and monomeric subunits. <i>Retrovirology</i> , 2014 , 11, 41	3.6	121
70	trimers, uncleaved Env proteins, and monomeric subunits. <i>Retrovirology</i> , 2014 , 11, 41 CD4-induced activation in a soluble HIV-1 Env trimer. <i>Structure</i> , 2014 , 22, 974-84 Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 ,	3.6 5.2	121
7º 69	trimers, uncleaved Env proteins, and monomeric subunits. <i>Retrovirology</i> , 2014 , 11, 41 CD4-induced activation in a soluble HIV-1 Env trimer. <i>Structure</i> , 2014 , 22, 974-84 Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 17624-9 Native-like BG505 SOSIP.664 Trimers Induce Autologous Tier-2 NAbs against Complex Epitopes in	3.6 5.2 11.5	121 101 239
70 69 68	CD4-induced activation in a soluble HIV-1 Env trimer. Structure, 2014, 22, 974-84 Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17624-9 Native-like BG505 SOSIP.664 Trimers Induce Autologous Tier-2 NAbs against Complex Epitopes in Rabbits and Macaques. AIDS Research and Human Retroviruses, 2014, 30, A67-A67 A Recombinant HIV Envelope Trimer Selects for Quaternary Dependent Antibodies Targeting the	3.6 5.2 11.5	121 101 239
7° 69 68 67	CD4-induced activation in a soluble HIV-1 Env trimer. Structure, 2014, 22, 974-84 Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17624-9 Native-like BG505 SOSIP.664 Trimers Induce Autologous Tier-2 NAbs against Complex Epitopes in Rabbits and Macaques. AIDS Research and Human Retroviruses, 2014, 30, A67-A67 A Recombinant HIV Envelope Trimer Selects for Quaternary Dependent Antibodies Targeting the Trimer Apex. AIDS Research and Human Retroviruses, 2014, 30, A7-A8 Stable 293IT and CHO cell lines expressing cleaved, stable HIV-1 envelope glycoprotein trimers for	3.6 5.2 11.5 1.6	121 101 239 1

63	Crystal structure of a soluble cleaved HIV-1 envelope trimer. <i>Science</i> , 2013 , 342, 1477-83	33.3	687
62	Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. <i>Science</i> , 2013 , 342, 148	8 4-9 9	573
61	Structural characterization of cleaved, soluble HIV-1 envelope glycoprotein trimers. <i>Journal of Virology</i> , 2013 , 87, 9865-72	6.6	67
60	Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. <i>Nature Structural and Molecular Biology</i> , 2013 , 20, 796-803	17.6	274
59	A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. <i>PLoS Pathogens</i> , 2013 , 9, e10036	1 7 .6	644
58	Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4351-6	11.5	214
57	Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 18256-61	11.5	151
56	Influences on trimerization and aggregation of soluble, cleaved HIV-1 SOSIP envelope glycoprotein. Journal of Virology, 2013 , 87, 9873-85	6.6	71
55	Clinical adjuvant combinations stimulate potent B-cell responses in vitro by activating dermal dendritic cells. <i>PLoS ONE</i> , 2013 , 8, e63785	3.7	12
54	Env-glycoprotein heterogeneity as a source of apparent synergy and enhanced cooperativity in inhibition of HIV-1 infection by neutralizing antibodies and entry inhibitors. <i>Virology</i> , 2012 , 422, 22-36	3.6	16
53	Good CoP, bad CoP? Interrogating the immune responses to primate lentiviral vaccines. <i>Retrovirology</i> , 2012 , 9, 80	3.6	12
52	Targeting HIV-1 envelope glycoprotein trimers to B cells by using APRIL improves antibody responses. <i>Journal of Virology</i> , 2012 , 86, 2488-500	6.6	38
51	Potent induction of antibody-secreting B cells by human dermal-derived CD14+ dendritic cells triggered by dual TLR ligation. <i>Journal of Immunology</i> , 2012 , 189, 5729-44	5.3	31
50	Occluding the mannose moieties on human immunodeficiency virus type 1 gp120 with griffithsin improves the antibody responses to both proteins in mice. <i>AIDS Research and Human Retroviruses</i> , 2012 , 28, 206-14	1.6	25
49	HIV-1 Env antibodies: are we in a bind or going blind?. <i>Nature Medicine</i> , 2012 , 18, 346-7; author reply 347-8	50.5	7
48	HIV-1 gp120 impairs the induction of B cell responses by TLR9-activated plasmacytoid dendritic cells. <i>Journal of Immunology</i> , 2012 , 189, 5257-65	5.3	22
47	Macaque studies of vaccine and microbicide combinations for preventing HIV-1 sexual transmission. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 8694-8	11.5	36
46	Partial enzymatic deglycosylation preserves the structure of cleaved recombinant HIV-1 envelope glycoprotein trimers. <i>Journal of Biological Chemistry</i> , 2012 , 287, 24239-54	5.4	45

(2004-2012)

45	How can HIV-type-1-Env immunogenicity be improved to facilitate antibody-based vaccine development?. <i>AIDS Research and Human Retroviruses</i> , 2012 , 28, 1-15	1.6	67
44	Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 11181-6	11.5	206
43	Trimeric HIV-1 glycoprotein gp140 immunogens and native HIV-1 envelope glycoproteins display the same closed and open quaternary molecular architectures. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 11440-5	11.5	139
42	IgG subclass profiles in infected HIV type 1 controllers and chronic progressors and in uninfected recipients of Env vaccines. <i>AIDS Research and Human Retroviruses</i> , 2010 , 26, 445-58	1.6	85
41	Enzymatic removal of mannose moieties can increase the immune response to HIV-1 gp120 in vivo. <i>Virology</i> , 2009 , 389, 108-21	3.6	44
40	A pille de resistance: how HIV-1 escapes small molecule CCR5 inhibitors. <i>Current Opinion in HIV and AIDS</i> , 2009 , 4, 118-24	4.2	72
39	Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. <i>Nature Medicine</i> , 2008 , 14, 617-21	50.5	233
38	N-terminal substitutions in HIV-1 gp41 reduce the expression of non-trimeric envelope glycoproteins on the virus. <i>Virology</i> , 2008 , 372, 187-200	3.6	24
37	AIDS/HIV. A STEP into darkness or light?. <i>Science</i> , 2008 , 320, 753-5	33.3	43
36	HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells. <i>PLoS Pathogens</i> , 2007 , 3, e169	7.6	124
35	HIV-1 pathogenesis: the complexities of the CCR5-CCL3L1 complex. Cell Host and Microbe, 2007, 2, 281	-323.4	16
34	HIV-1 envelope triggers polyclonal Ig class switch recombination through a CD40-independent mechanism involving BAFF and C-type lectin receptors. <i>Journal of Immunology</i> , 2006 , 176, 3931-41	5.3	178
33	V3: HIVR switch-hitter. AIDS Research and Human Retroviruses, 2005, 21, 171-89	1.6	234
32	Topical microbicides become topical. New England Journal of Medicine, 2005, 352, 298-300	59.2	27
31	Public health. A sound rationale needed for phase III HIV-1 vaccine trials. <i>Science</i> , 2004 , 303, 316	33.3	96
30	HIV vaccine design and the neutralizing antibody problem. <i>Nature Immunology</i> , 2004 , 5, 233-6	19.1	659
29	Urgently needed: a filter for the HIV-1 vaccine pipeline. <i>Nature Medicine</i> , 2004 , 10, 769-71	50.5	36
28	Is there enough gp120 in the body fluids of HIV-1-infected individuals to have biologically significant effects?. <i>Virology</i> , 2004 , 323, 1-8	3.6	73

27	The CCR5 and CXCR4 coreceptorscentral to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection. <i>AIDS Research and Human Retroviruses</i> , 2004 , 20, 111-	26 ^{1.6}	382
26	The entry of entry inhibitors: a fusion of science and medicine. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 10598-602	11.5	236
25	Preventing HIV-1 sexual transmissionnot sexy enough science, or no benefit to the bottom line?. <i>Journal of Antimicrobial Chemotherapy</i> , 2003 , 52, 890-2	5.1	22
24	Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. <i>Nature Medicine</i> , 2003 , 9, 343-6	50.5	419
23	AIDS vaccines: on the trail of two trials. <i>Nature</i> , 2002 , 415, 365-6	50.4	8
22	Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. <i>Journal of Virology</i> , 2002 , 76, 8875-89	6.6	366
21	The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. <i>Journal of Virology</i> , 2002 , 76, 7293-305	6.6	507
20	Enhancing the proteolytic maturation of human immunodeficiency virus type 1 envelope glycoproteins. <i>Journal of Virology</i> , 2002 , 76, 2606-16	6.6	120
19	HIV type 1 molecular clones able to use the Bonzo/STRL-33 coreceptor for virus entry. <i>AIDS Research and Human Retroviruses</i> , 2001 , 17, 217-27	1.6	17
18	Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. <i>Journal of Virology</i> , 2001 , 75, 8340-7	6.6	591
17	New targets for inhibitors of HIV-1 replication. <i>Nature Reviews Molecular Cell Biology</i> , 2000 , 1, 40-9	48.7	142
16	A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. <i>Journal of Virology</i> , 2000 , 74, 627-43	6.6	453
15	Variable-loop-deleted variants of the human immunodeficiency virus type 1 envelope glycoprotein can be stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits. Journal of Virology, 2000 , 74, 5091-100	6.6	98
14	HIV-1 antigen-specific and -nonspecific B cell responses are sensitive to combination antiretroviral therapy. <i>Journal of Experimental Medicine</i> , 1998 , 188, 233-45	16.6	219
13	An investigation of the high-avidity antibody response to glycoprotein 120 of human immunodeficiency virus type 1. <i>AIDS Research and Human Retroviruses</i> , 1997 , 13, 1007-15	1.6	25
12	Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. <i>Science</i> , 1994 , 266, 1024-7	33.3	968
11	The reactivities of HIV-1+ human sera with solid-phase V3 loop peptides can be poor predictors of their reactivities with V3 loops on native gp120 molecules. <i>AIDS Research and Human Retroviruses</i> , 1993 , 9, 209-19	1.6	35
10	HIV tropism. <i>Nature</i> , 1993 , 361, 309-10	50.4	6

LIST OF PUBLICATIONS

9	Which gp160 vaccine?. <i>Nature</i> , 1993 , 361, 503	50.4	12	
8	Properties of an HIV Naccine Nature, 1993, 362, 505-506	50.4	2	
7	Sensitive ELISA for the gp120 and gp160 surface glycoproteins of HIV-1. <i>AIDS Research and Human Retroviruses</i> , 1988 , 4, 369-79	1.6	60	
6	HIV Molecular Immunology 2015		7	
5	Tailored Design of Protein Nanoparticle Scaffolds for Multivalent Presentation of Viral Glycoprotein Antigens		7	
4	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens		4	
3	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates		7	
2	Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike		6	
1	Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM		1	