
Randall J Donohue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7134161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ldentifying managementâ€driven dynamics in vegetation cover: Applying the <i>Compere</i> framework to Cooper Creek, Australia. Ecosphere, 2022, 13, .	1.0	5
2	Nationwide crop yield estimation based on photosynthesis and meteorological stress indices. Agricultural and Forest Meteorology, 2020, 284, 107872.	1.9	22
3	Climate drivers provide valuable insights into late season prediction of Australian wheat yield. Agricultural and Forest Meteorology, 2020, 295, 108202.	1.9	3
4	To Blend or Not to Blend? A Framework for Nationwide Landsat–MODIS Data Selection for Crop Yield Prediction. Remote Sensing, 2020, 12, 1653.	1.8	6
5	Seasonal, interannual and decadal drivers of tree and grass productivity in an Australian tropical savanna. Global Change Biology, 2018, 24, 2530-2544.	4.2	24
6	Fractional vegetation cover estimation by using multi-angle vegetation index. Remote Sensing of Environment, 2018, 216, 44-56.	4.6	68
7	Towards a national, remote-sensing-based model for predicting field-scale crop yield. Field Crops Research, 2018, 227, 79-90.	2.3	54
8	Lags in hydrologic recovery following an extreme drought: Assessing the roles of climate and catchment characteristics. Water Resources Research, 2017, 53, 4821-4837.	1.7	112
9	A simple hypothesis of how leaf and canopyâ€level transpiration and assimilation respond to elevated CO ₂ reveals distinct response patterns between disturbed and undisturbed vegetation. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 168-184.	1.3	44
10	Habitat Condition Assessment System: a new way to assess the condition of natural habitats for terrestrial biodiversity across whole regions using remote sensing data. Methods in Ecology and Evolution, 2016, 7, 1050-1059.	2.2	27
11	Global estimation of effective plant rooting depth: Implications for hydrological modeling. Water Resources Research, 2016, 52, 8260-8276.	1.7	162
12	Longâ€ŧerm CO ₂ fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2125-2140.	1.3	71
13	The hydrological effects of varying vegetation characteristics in a temperate water-limited basin: Development of the dynamic Budyko-Choudhury-Porporato (dBCP) model. Journal of Hydrology, 2016, 543, 595-611.	2.3	66
14	Dynamic identification of summer cropping irrigated areas in a large basin experiencing extreme climatic variability. Remote Sensing of Environment, 2014, 154, 139-152.	4.6	42
15	Impact of CO ₂ fertilization on maximum foliage cover across the globe's warm, arid environments. Geophysical Research Letters, 2013, 40, 3031-3035.	1.5	442
16	Less bluster ahead? Ecohydrological implications of global trends of terrestrial nearâ€surface wind speeds. Ecohydrology, 2012, 5, 381-388.	1.1	145
17	Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. Journal of Hydrology, 2012, 416-417, 182-205.	2.3	906
18	Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko's hydrological model. Journal of Hydrology, 2012, 436-437, 35-50.	2.3	327

RANDALL J DONOHUE

#	Article	IF	CITATIONS
19	Assessing the differences in sensitivities of runoff to changes in climatic conditions across a large basin. Journal of Hydrology, 2011, 406, 234-244.	2.3	169
20	Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. Journal of Hydrology, 2010, 386, 186-197.	2.3	384
21	A data resource for analysing dynamics in Australian ecohydrological conditions. Austral Ecology, 2010, 35, 593-594.	0.7	5
22	Climateâ€related trends in Australian vegetation cover as inferred from satellite observations, 1981–2006. Global Change Biology, 2009, 15, 1025-1039.	4.2	273
23	Deriving consistent long-term vegetation information from AVHRR reflectance data using a cover-triangle-based framework. Remote Sensing of Environment, 2008, 112, 2938-2949.	4.6	71
24	Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with nearâ€surface reanalysis output. Geophysical Research Letters, 2008, 35, .	1.5	335