Shiang Yu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/713387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Col-OSSOS: Probing Ice Line/Color Transitions within the Kuiper Belt's Progenitor Populations. Planetary Science Journal, 2022, 3, 9.	1.5	3
2	FOSSIL. II. The Rotation Periods of Small-sized Hilda Asteroids. Astrophysical Journal, Supplement Series, 2022, 259, 7.	3.0	3
3	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XVI. 69 New Quasars at 5.8 < z < 7.0. Astrophysical Journal, Supplement Series, 2022, 259, 18.	3.0	25
4	2018 August 15 stellar occultation by minor planet (134340) Pluto. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5550-5559.	1.6	1
5	Simultaneous Detection of Optical Flares of the Magnetically Active M-dwarf Wolf359. Astronomical Journal, 2022, 163, 164.	1.9	7
6	Statistical Study of Approaching Strong Diffusion of Lowâ€Energy Electrons by Chorus and ECH Waves Based on <i>In Situ</i> Observations. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	4
7	Statistical Survey of Arase Satellite Data Sets in Conjunction With the Finnish Riometer Network. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	1
8	Collaborative Research Activities of the Arase and Van Allen Probes. Space Science Reviews, 2022, 218, .	3.7	10
9	MUSUBI (MegaCam Ultra-deep Survey: u*-band Imaging) Data for the COSMOS and SXDS Fields. Astrophysical Journal, Supplement Series, 2022, 260, 54.	3.0	0
10	Active auroral arc powered by accelerated electrons from very high altitudes. Scientific Reports, 2021, 11, 1610.	1.6	6
11	The TAOS II Survey: Real-time Detection and Characterization of Occultation Events. Publications of the Pacific, 2021, 133, 034503.	1.0	5
12	Investigation of Smallâ€Scale Electron Density Irregularities Observed by the Arase and Van Allen Probes Satellites Inside and Outside the Plasmasphere. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA027917.	0.8	10
13	Multiâ€Event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere During Nonâ€Stormâ€Time Substorms. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029081.	0.8	7
14	Extremely Collimated Electron Beams in the High Latitude Magnetosphere Observed by Arase. Geophysical Research Letters, 2021, 48, e2020GL090522.	1.5	0
15	High-performance 1–10  THz integrating sphere. Applied Optics, 2021, 60, 3784.	0.9	2
16	Col-OSSOS: The Distinct Color Distribution of Single and Binary Cold Classical KBOs. Planetary Science Journal, 2021, 2, 90.	1.5	5
17	Contribution of Electron Pressure to Ring Current and Ground Magnetic Depression Using RAMâ€SCB Simulations and Arase Observations During 7–8 November 2017 Magnetic Storm. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029109.	0.8	4
18	Arase Observation of Simultaneous Electron Scatterings by Upperâ€Band and Lowerâ€Band Chorus Emissions. Geophysical Research Letters, 2021, 48, e2021GL093708.	1.5	2

#	Article	IF	CITATIONS
19	Magnetic Field and Energetic Particle Flux Oscillations and Highâ€Frequency Waves Deep in the Inner Magnetosphere During Substorm Dipolarization: ERG Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029095.	0.8	2
20	FOSSIL. I. The Spin Rate Limit of Jupiter Trojans. Planetary Science Journal, 2021, 2, 191.	1.5	11
21	Long-term Dynamical Stability in the Outer Solar System. I. The Regular and Chaotic Evolution of the 34 Largest Trans-Neptunian Objects. Astronomical Journal, 2021, 162, 164.	1.9	2
22	First Simultaneous Observation of a Night Time Mediumâ€Scale Traveling Ionospheric Disturbance From the Ground and a Magnetospheric Satellite. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029086.	0.8	3
23	OSSOS. XXIII. 2013 VZ ₇₀ and the Temporary Coorbitals of the Giant Planets. Planetary Science Journal, 2021, 2, 212.	1.5	3
24	Study of an equatorward detachment of auroral arc from the oval using groundâ€space observations and the BATSâ€Râ€US – CIMI model. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029080.	0.8	4
25	Comparative Study of Electric Currents and Energetic Particle Fluxes in a Solar Flare and Earth Magnetospheric Substorm. Astrophysical Journal, 2021, 923, 151.	1.6	5
26	SPIRou: NIR velocimetryÂand spectropolarimetry at the CFHT. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5684-5703.	1.6	84
27	Arase Observation of the Source Region of Auroral Arcs and Diffuse Auroras in the Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027310.	0.8	7
28	Pitchâ€Angle Scattering of Inner Magnetospheric Electrons Caused by ECH Waves Obtained With the Arase Satellite. Geophysical Research Letters, 2020, 47, e2020GL089926.	1.5	7
29	Plasma and Field Observations in the Magnetospheric Source Region of a Stable Auroral Red (SAR) Arc by the Arase Satellite on 28 March 2017. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028068.	0.8	8
30	Comprehensive Observations of Substormâ€Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation. Geophysical Research Letters, 2020, 47, e2019GL086040.	1.5	21
31	Prime Focus Spectrograph (PFS): the prime focus instrument. , 2020, , .		4
32	The characteristic of Teledyne e2v CIS 113 CMOS sensors. , 2020, , .		3
33	The Long-Lasting QP Emissions Observed On Arase Satellite And Lovozero Station. , 2020, , .		0
34	ULTIMATE-Subaru: System performance modeling of GLAO and wide-field NIR instruments. , 2020, , .		3
35	ULTIMATE-Subaru: conceptual design of WFI, a near-infrared wide field imager. , 2020, , .		1

Prime Focus Spectrograph (PFS): the metrology camera system. , 2020, , .

3

#	Article	IF	CITATIONS
37	SPICA Mid-infrared Instrument (SMI): The latest design and specifications. , 2020, , .		2
38	Pre-flight optical test and calibration for the Cosmic Infrared Background ExpeRiment 2 (CIBER-2). , 2020, , .		1
39	The calibration source assembly for SPICA/SAFARI instrument. , 2020, , .		1
40	ULTIMATE-Subaru: enhancing the Subaru's wide-field capability with GLAO. , 2020, , .		1
41	Col-OSSOS: The Colors of the Outer Solar System Origins Survey. Astrophysical Journal, Supplement Series, 2019, 243, 12.	3.0	31
42	OSSOS. XVIII. Constraining Migration Models with the 2:1 Resonance Using the Outer Solar System Origins Survey. Astronomical Journal, 2019, 158, 214.	1.9	10
43	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 â‰ÂzÂâ‰Â7.0. Astrophysical Journal, 2019, 883, 183.	1.6	74
44	Boötes. IV. A new Milky Way satellite discovered in the Subaru Hyper Suprime-Cam Survey and implications for the missing satellite problem. Publication of the Astronomical Society of Japan, 2019, 71, .	1.0	44
45	Second data release of the Hyper Suprime-Cam Subaru Strategic Program. Publication of the Astronomical Society of Japan, 2019, 71, .	1.0	320
46	The Contribution of Dwarf Planets to the Origin of Jupiter Family Comets. Astronomical Journal, 2019, 158, 184.	1.9	8
47	OSSOS. XII. Variability Studies of 65 Trans-Neptunian Objects Using the Hyper Suprime-Cam. Astrophysical Journal, Supplement Series, 2019, 244, 19.	3.0	7
48	Col-OSSOS: Color and Inclination Are Correlated throughout the Kuiper Belt. Astronomical Journal, 2019, 157, 94.	1.9	26
49	Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data. Publication of the Astronomical Society of Japan, 2019, 71, .	1.0	413
50	Near-infrared Survey and Photometric Redshifts in the Extended GOODS-North Field. Astrophysical Journal, 2019, 871, 233.	1.6	6
51	Discovery of the First Low-luminosity Quasar at zÂ>Â7. Astrophysical Journal Letters, 2019, 872, L2.	3.0	114
52	The Space Physics Environment Data Analysis System (SPEDAS). Space Science Reviews, 2019, 215, 9.	3.7	332
53	SILVERRUSH. II. First catalogs and properties of â^¼2000 Lyα emitters and blobs at <i>z</i> Ââ^¼Â6–7 identific over the 14–21 deg2 sky. Publication of the Astronomical Society of Japan, 2018, 70, .	ed 1.0	23
54	Searches for new Milky Way satellites from the first two years of data of the Subaru/Hyper Suprime-Cam survey: Discovery of CetusÂlII. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	65

#	Article	IF	CITATIONS
55	Machine-learning-based real–bogus system for the HSC-SSP moving object detection pipeline. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	17
56	The Hyper Suprime-Cam SSP Survey: Overview and survey design. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	566
57	Multi-band photometry of trans-Neptunian objects in the Subaru Hyper Suprime-Cam survey. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	10
58	Searching for moving objects in HSC-SSP: Pipeline and preliminary results. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	14
59	Illuminating Low Surface Brightness Galaxies with the Hyper Suprime-Cam Survey. Astrophysical Journal, 2018, 857, 104.	1.6	127
60	Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program strategy and clustering properties of â^¼2000 Lyα emitters at <i>z</i> Â=Â6–7 over the 0.3–0.5 Gpc2 survey area. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	159
61	SILVERRUSH. IV. Lyα luminosity functions at <i>z</i> Â=Â5.7 and 6.6 studied with â^¼1300 Lyα emitters on the 14–21 deg2 sky. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	140
62	Luminous quasars do not live in the most overdense regions of galaxies at <i>z</i> Ââ^1/4Â4. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	43
63	Density Depletions Associated With Enhancements of Electron Cyclotron Harmonic Emissions: An ERG Observation. Geophysical Research Letters, 2018, 45, 10,075.	1.5	10
64	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at zÂ=Â6. Astrophysical Journal, 2018, 869, 150.	1.6	153
65	Dependence of Performance of Surface Plasmon Coupled Quantum Well Infrared Photodetectors on Doping. Journal of Nanoscience and Nanotechnology, 2018, 18, 7838-7842.	0.9	1
66	Geospace exploration project ERG. Earth, Planets and Space, 2018, 70, .	0.9	201
67	Colors of Centaurs observed by the Subaru/Hyper Suprime-Cam and implications for their origin. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	1
68	SPIRou: A NIR Spectropolarimeter/High-Precision Velocimeter for the CFHT. , 2018, , 903-929.		13
69	Substormâ€Associated Ionospheric Flow Fluctuations During the 27 March 2017 Magnetic Storm: SuperDARNâ€Arase Conjunction. Geophysical Research Letters, 2018, 45, 9441-9449.	1.5	9
70	Hyper Suprime-Cam: Filters. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	160
71	Hyper Suprime-Cam: Camera dewar design. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	162
72	SILVERRUSH. III. Deep optical and near-infrared spectroscopy for $Lyl \pm$ and UV-nebular lines of bright $Lyl \pm$	1.0	119

emitters at <i>z</i>Â=Â6â€"7. Publication of the Astronomical Society of Japan, 2018, 70, .

#	Article	IF	CITATIONS
73	Wavelength tuning of surface plasmon coupled quantum well infrared photodetectors. Optics Express, 2018, 26, 552.	1.7	5
74	OSSOS. VII. 800+ Trans-Neptunian Objects—The Complete Data Release. Astrophysical Journal, Supplement Series, 2018, 236, 18.	3.0	108
75	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). IV. Discovery of 41 Quasars and Luminous Galaxies at 5.7Ââ‰ÅzÂâ‰Å6.9. Astrophysical Journal, Supplement Series, 2018, 237, 5.	3.0	81
76	<i>SPICA</i> —A Large Cryogenic Infrared Space Telescope: Unveiling the Obscured Universe. Publications of the Astronomical Society of Australia, 2018, 35, .	1.3	90
77	Hyper Suprime-Cam: System design and verification of image quality. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	289
78	First data release of the Hyper Suprime-Cam Subaru Strategic Program. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	327
79	Subaru High- <i>z</i> Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7Â<Â <i>z</i> ≤6.8. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	95
80	Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV luminosity functions at <i>z</i> â^¼ 4–7 derived with the half-million dropouts on the 100Âdeg2 sky. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	164
81	Status of the Transneptunian Automated Occultation Survey (TAOS II). , 2018, , .		3
82	Prime Focus Spectrograph (PFS) for the Subaru telescope: ongoing integration and future plans. , 2018, , .		15
83	On-sky results with the fast guiding system on the SPIRou spectroplarimeter at CFHT. , 2018, , .		2
84	Software development of fiber positioning sequencer for prime focus spectrograph of Subaru telescope. , 2018, , .		1
85	Metrology camera system of prime focus spectrograph for Subaru telescope. , 2018, , .		0
86	Integration and instrument characterization of the cosmic infrared background experiment 2 (CIBER-2). , 2018, , .		1
87	Development of data storage system and GSE for cosmic infrared background experiment 2 (CIBER-2). , 2018, , .		0
88	A conceptual design study for Subaru ULTIMATE GLAO. , 2018, , .		3
89	OSSOS. V. Diffusion in the Orbit of a High-perihelion Distant Solar System Object. Astronomical Journal, 2017, 153, 262.	1.9	34
90	High transmittance and broaden bandwidth through the morphology of anti-relfective layers on THz polarizer with Si substrate. Proceedings of SPIE, 2017, , .	0.8	0

#	Article	IF	CITATIONS
91	All planetesimals born near the Kuiper belt formed as binaries. Nature Astronomy, 2017, 1, .	4.2	63
92	High Transmittance Broadband THz Polarizer Using 3D-IC Technologies. , 2017, , .		0
93	Characteristics of surface plasmon coupled quantum well infrared photodetectors. Journal of Applied Physics, 2017, 121, 244503.	1.1	2
94	Col-OSSOS: Colors of the Interstellar Planetesimal 1I/â€~Oumuamua. Astrophysical Journal Letters, 2017, 851, L38.	3.0	96
95	Col-OSSOS: z-Band Photometry Reveals Three Distinct TNO Surface Types. Astronomical Journal, 2017, 154, 101.	1.9	44
96	The Trans-Neptunian Automated Occultation Survey (<i>TAOS II</i>). Proceedings of the International Astronomical Union, 2017, 14, 193-196.	0.0	0
97	Robust terahertz polarizers with high transmittance at selected frequencies through Si wafer bonding technologies. Optics Letters, 2017, 42, 4917.	1.7	9
98	Low-energy particle experiments–electron analyzer (LEPe) onboard the Arase spacecraft. Earth, Planets and Space, 2017, 69, .	0.9	43
99	GALAXY-SCALE GRAVITATIONAL LENS CANDIDATES FROM THE HYPER SUPRIME-CAM IMAGING SURVEY AND THE GALAXY AND MASS ASSEMBLY SPECTROSCOPIC SURVEY. Astrophysical Journal, 2016, 832, 135.	1.6	7
100	Detector upgrade of Subaru's Multi-object Infrared Camera and Spectrograph (MOIRCS). Proceedings of SPIE, 2016, , .	0.8	5
101	OSSOS. IV. DISCOVERY OF A DWARF PLANET CANDIDATE IN THE 9:2 RESONANCE WITH NEPTUNE. Astronomical Journal, 2016, 152, 212.	1.9	17
102	THE OUTER SOLAR SYSTEM ORIGINS SURVEY. I. DESIGN AND FIRST-QUARTER DISCOVERIES. Astronomical Journal, 2016, 152, 70.	1.9	105
103	A 9 megapixel large-area back-thinned CMOS sensor with high sensitivity and high frame-rate for the TAOS II program. Proceedings of SPIE, 2016, , .	0.8	6
104	DISCOVERY OF A NEW RETROGRADE TRANS-NEPTUNIAN OBJECT: HINT OF A COMMON ORBITAL PLANE FOR LOW SEMIMAJOR AXIS, HIGH-INCLINATION TNOs AND CENTAURS. Astrophysical Journal Letters, 2016, 827, L24.	3.0	70
105	A NEW MILKY WAY SATELLITE DISCOVERED IN THE SUBARU/HYPER SUPRIME-CAM SURVEY. Astrophysical Journal, 2016, 832, 21.	1.6	74
106	Status of the Transneptunian Automated Occultation Survey (TAOS II). Proceedings of SPIE, 2016, , .	0.8	9
107	The nuMOIRCS project: detector upgrade overview and early commissioning results. Proceedings of SPIE, 2016, , .	0.8	4

108 Metrology camera system of prime focus spectrograph for Suburu telescope. , 2016, , .

2

#	Article	IF	CITATIONS
109	The current status of prime focus instrument of Subaru prime focus spectrograph. Proceedings of SPIE, 2016, , .	0.8	0
110	Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni. Nature, 2016, 529, 54-58.	13.7	71
111	The cosmic infrared background experiment-2 (CIBER-2) for studying the near-infrared extragalactic background light. Proceedings of SPIE, 2016, , .	0.8	4
112	The prototype cameras for trans-Neptunian automatic occultation survey. Proceedings of SPIE, 2016, , .	0.8	7
113	Prime Focus Spectrograph (PFS) for the Subaru telescope: overview, recent progress, and future perspectives. Proceedings of SPIE, 2016, , .	0.8	66
114	Hyper-luminous dust-obscured galaxies discovered by the Hyper Suprime-Cam on Subaru and WISE. Publication of the Astronomical Society of Japan, 2015, 67, .	1.0	39
115	Prime Focus Spectrograph for the Subaru telescope: massively multiplexed optical and near-infrared fiber spectrograph. Journal of Astronomical Telescopes, Instruments, and Systems, 2015, 1, 035001.	1.0	38
116	High transmittance silicon terahertz polarizer using wafer bonding technology. Proceedings of SPIE, 2015, , .	0.8	0
117	Characteristic of e2v CMOS sensors for astronomical applications. Proceedings of SPIE, 2014, , .	0.8	4
118	Progress with the Prime Focus Spectrograph for the Subaru Telescope: a massively multiplexed optical and near-infrared fiber spectrograph. , 2014, , .		3
119	Status of the Transneptunian Automated Occultation Survey (TAOS II). Proceedings of SPIE, 2014, , .	0.8	7
120	Fiber optical cable and connector system (FOCCoS) for PFS/ Subaru. , 2014, , .		4
121	THE TAIWANESE-AMERICAN OCCULTATION SURVEY PROJECT STELLAR VARIABILITY. III. DETECTION OF 58 NEW VARIABLE STARS. Astronomical Journal, 2014, 147, 70.	1.9	1
122	Prime focus instrument of prime focus spectrograph for Subaru telescope. Proceedings of SPIE, 2014, ,	0.8	3
123	SPIRou: the near-infrared spectropolarimeter/high-precision velocimeter for the Canada-France-Hawaii telescope. Proceedings of SPIE, 2014, , .	0.8	80
124	Metrology camera system of prime focus spectrograph for Subaru telescope. , 2014, , .		3
125	High speed wide field CMOS camera for Transneptunian Automatic Occultation Survey. , 2014, , .		3
126	THE TAOS PROJECT: RESULTS FROM SEVEN YEARS OF SURVEY DATA. Astronomical Journal, 2013, 146, 14.	1.9	42

#	Article	IF	CITATIONS
127	Voltage-tunable dual-band quantum dot infrared photodetectors for temperature sensing. Optics Express, 2012, 20, 10484.	1.7	9
128	The metrology cameras for Subaru PFS and FMOS. Proceedings of SPIE, 2012, , .	0.8	5
129	Hyper Suprime-Cam: filter exchange unit and shutter. , 2012, , .		3
130	Front end of the SPIRou spectropolarimeter for Canada-France Hawaii Telescope. , 2012, , .		10
131	Detectors and cryostat design for the SuMIRe Prime Focus Spectrograph (PFS). , 2012, , .		5
132	SPIRou @ CFHT: data reduction software and simulation tools. Proceedings of SPIE, 2012, , .	0.8	5
133	CLUSTERING PROPERTIES OF B <i>z</i> K-SELECTED GALAXIES IN GOODS-N: ENVIRONMENTAL QUENCHING AND TRIGGERING OF STAR FORMATION AT <i>z</i> â ¹ ⁄4 2. Astrophysical Journal, 2012, 756, 71.	1.6	65
134	SPIRou @ CFHT: design of the instrument control system. , 2012, , .		6
135	GRB 071112C: A CASE STUDY OF DIFFERENT MECHANISMS IN X-RAY AND OPTICAL TEMPORAL EVOLUTION. Astrophysical Journal, 2012, 748, 44.	1.6	12
136	Hyper Suprime-Cam. Proceedings of SPIE, 2012, , .	0.8	242
137	The Transneptunian Automated Occultation Survey (TAOS II). Proceedings of SPIE, 2012, , .	0.8	16
138	Wide-field photometry at 20 Hz for the TAOS II Project. , 2012, , .		3
139	Prime focus spectrograph: Subaru's future. Proceedings of SPIE, 2012, , .	0.8	24
140	Subaru FMOS now and future. Proceedings of SPIE, 2012, , .	0.8	5
141	IS FS Tau B DRIVING AN ASYMMETRIC JET?. Astrophysical Journal, 2012, 749, 62.	1.6	12
142	A MOLECULAR HYDROGEN NEBULA IN THE CENTRAL cD GALAXY OF THE PERSEUS CLUSTER. Astrophysical Journal, 2012, 744, 112.	1.6	37
143	FlyEyes: A CCD-based Wavefront Sensor for PUEO, the CFHT Curvature AO System. Publications of the Astronomical Society of the Pacific, 2011, 123, 448-460.	1.0	1
144	Temperature dependence of quantum efficiency in Quantum Dot Infrared Photodetectors. Infrared Physics and Technology, 2011, 54, 224-227.	1.3	2

#	Article	IF	CITATIONS
145	Spectral response and device performance tuning of long-wavelength InAs QDIPs. Infrared Physics and Technology, 2011, 54, 233-236.	1.3	4
146	Hyper Suprime-Cam: camera design. Proceedings of SPIE, 2010, , .	0.8	13
147	STAR-FORMING REGION Sh 2-233IR. I. DEEP NEAR-INFRARED OBSERVATIONS TOWARD THE EMBEDDED STELLAR CLUSTERS. Astrophysical Journal, 2010, 720, 1-8.	1.6	6
148	THE TAIWANESE-AMERICAN OCCULTATION SURVEY PROJECT STELLAR VARIABILITY. II. DETECTION OF 15 VARIABLE STARS. Astronomical Journal, 2010, 139, 2026-2033.	1.9	7
149	THE TAOS PROJECT: UPPER BOUNDS ON THE POPULATION OF SMALL KUIPER BELT OBJECTS AND TESTS OF MODELS OF FORMATION AND EVOLUTION OF THE OUTER SOLAR SYSTEM. Astronomical Journal, 2010, 139, 1499-1514.	1.9	34
150	THE TAIWAN-AMERICAN OCCULTATION SURVEY PROJECT STELLAR VARIABILITY. I. DETECTION OF LOW-AMPLITUDE I´ SCUTI STARS. Astronomical Journal, 2010, 139, 757-764.	1.9	8
151	The TAOS Project: Statistical Analysis of Multi-Telescope Time Series Data. Publications of the Astronomical Society of the Pacific, 2010, 122, 959-975.	1.0	9
152	Vertically Coupled Quantum-Dot Infrared Photodetectors. IEEE Photonics Technology Letters, 2010, 22, 796-798.	1.3	3
153	UPPER LIMITS ON THE NUMBER OF SMALL BODIES IN SEDNA-LIKE ORBITS BY THE TAOS PROJECT. Astronomical Journal, 2009, 138, 1893-1901.	1.9	15
154	Confinement-enhanced dots-in-a-well QDIPs with operating temperature over 200K. Infrared Physics and Technology, 2009, 52, 281-284.	1.3	3
155	Detection wavelength and device performance tuning of InAs QDIPs with thin AlGaAs layers. Infrared Physics and Technology, 2009, 52, 264-267.	1.3	3
156	Long-Wavelength Quantum-Dot Infrared Photodetectors With Operating Temperature Over 200 K. IEEE Photonics Technology Letters, 2009, 21, 118-120.	1.3	6
157	Characteristics of In(Ga)As quantum ring infrared photodetectors. Journal of Applied Physics, 2009, 105, .	1.1	31
158	The Taiwanese-American Occultation Survey: The Multi-Telescope Robotic Observatory. Publications of the Astronomical Society of the Pacific, 2009, 121, 138-152.	1.0	26
159	A Close Binary Star Resolved from Occultation by 87 Sylvia. Publications of the Astronomical Society of the Pacific, 2009, 121, 359-364.	1.0	1
160	The TAOS Project: High-Speed Crowded Field Aperture Photometry. Publications of the Astronomical Society of the Pacific, 2009, 121, 1429-1439.	1.0	9
161	High quantum efficiency dots-in-a-well quantum dot infrared photodetectors with AlGaAs confinement enhancing layer. Applied Physics Letters, 2008, 92, .	1.5	51

162 The shutter and filter exchanger system of Hyper Suprime-Cam. , 2008, , .

1

#	Article	IF	CITATIONS
163	First Results from the Taiwanese-American Occultation Survey (TAOS). Astrophysical Journal, 2008, 685, L157-L160.	1.6	22
164	Early Optical Brightening in GRB 071010B. Astrophysical Journal, 2008, 679, L5-L8.	1.6	11
165	Temperature dependent responsivity of quantum dot infrared photodetectors. Infrared Physics and Technology, 2007, 50, 166-170.	1.3	18
166	FlyEyes: integrating CCID-35 into PUEO AO system at CFHT. , 2006, , .		2
167	CFHT-WIRCam: interlaced science and guiding readout with the Hawaii-2RG IR sensor. , 2006, 6269, 332.		4
168	TAOS – The Taiwanese-American Occultation Survey. Astronomische Nachrichten, 2006, 327, 814-817.	0.6	7
169	STATUS OF THE TAOS PROJECT AND A SIMULATOR FOR TNO OCCULTATION. , 2006, , 345-358.		1
170	Ratio Indicator Characterization for Measuring the Precision of an Estimate Obtained by Processing Sampled Data. IEEE Transactions on Instrumentation and Measurement, 2005, 54, 1156-1165.	2.4	1
171	WIRCam: the infrared wide-field camera for the Canada-France-Hawaii Telescope. , 2004, 5492, 978.		109
172	TAOS: The Taiwanese–American Occultation Survey. Earth, Moon and Planets, 2003, 92, 459-464.	0.3	17
173	On the equivalence between magnetic-field-induced phase transitions in the integer quantum Hall effect. Solid State Communications, 2003, 126, 197-201.	0.9	7
174	InAs/GaAs quantum dot infrared photodetectors with different growth temperatures. Infrared Physics and Technology, 2003, 44, 527-532.	1.3	4
175	Relaxation mechanisms of the photoelectrons in the second miniband of a superlattice structure. IEEE Journal of Quantum Electronics, 2003, 39, 306-313.	1.0	3
176	Infrared detection utilizing both intersubband and free-carrier absorption in reverse-biased superlattice infrared photodetector. IEEE Journal of Quantum Electronics, 2003, 39, 1476-1480.	1.0	1
177	Fast CCD Photometry in the Taiwan-America Occultation Survey. Open Astronomy, 2003, 12, .	0.2	1
178	Performance and application of a superlattice infrared photodetector with a blocking barrier. Journal of Applied Physics, 2002, 91, 943-948.	1.1	15
179	Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer. Applied Physics Letters, 2001, 78, 1023-1025.	1.5	105
180	A detailed study of non-uniform quantum well infrared photodetectors. Infrared Physics and Technology, 2001, 42, 177-184.	1.3	3

#	Article	IF	CITATIONS
181	High performance InAs/GaAs quantum dot infrared photodetectors with AlGaAs current blocking layer. Infrared Physics and Technology, 2001, 42, 473-477.	1.3	23
182	Optical phonon emission in GaAs/AlAs and GaAs/Al0.7Ga0.3As multiple quantum well structures. Journal of Luminescence, 2000, 92, 145-150.	1.5	3
183	Carrier–carrier scattering: an experimental comparison of 5 and 3nm AlxGa1â^'xAs/GaAs quantum wells. Solid State Communications, 2000, 115, 329-333.	0.9	1
184	Raman and hot electron–neutral acceptor luminescence studies of electron–optical phonon interactions in GaAs/AlxGa1â^xAs quantum wells. Solid State Communications, 2000, 115, 563-567.	0.9	10
185	A light-induced tunneling state in a submicron double barrier tunneling diode with a center-doped well. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 331-334.	1.3	0
186	Nonthermal carrier dynamics in AlxGa1â^'xAs/GaAs quantum wells. Microelectronic Engineering, 2000, 51-52, 189-194.	1.1	0
187	Hot-electron relaxation via optical phonon emissions in GaAs/AlxGa1-xAs quantum well structures: dependence upon the alloy composition and barrier width. Nanotechnology, 2000, 11, 227-232.	1.3	1
188	Nonuniform quantum well infrared photodetectors. Journal of Applied Physics, 2000, 87, 522-525.	1.1	5
189	Carrier-carrier scattering inGaAs/AlxGa1â^'xAsquantum wells. Physical Review B, 2000, 61, 15592-15595.	1.1	2
190	Multicolor infrared detection using two stacks of superlattice structures in a back-to-back configuration. Applied Physics Letters, 2000, 77, 2240-2242.	1.5	5
191	Ultrafast carrier–carrier scattering in AlxGa1â~'xAs/GaAs quantum wells. Physica B: Condensed Matter, 1999, 272, 387-390.	1.3	7
192	Low-resistance vertical conduction across epitaxially lifted-off n-GaAs film and Pd/Ge/Pd coated Si substrate. Journal of Electronic Materials, 1998, 27, 110-113.	1.0	1
193	Optical and structural properties of epitaxially lifted-off GaAs films. Journal of Applied Physics, 1998, 83, 466-468.	1.1	3
194	Normal incident long-wavelength quantum well infrared photodetectors using electron intersubband transitions. Applied Physics Letters, 1997, 71, 119-121.	1.5	34
195	Doping effect on normal incident InGaAs/GaAs long-wavelength quantum well infrared photodetectors. Journal of Applied Physics, 1997, 82, 2680-2683.	1.1	13
196	Surface modification of YBa2Cu3Oythin films with a scanning tunneling microscope. Journal of Applied Physics, 1994, 76, 2535-2537.	1.1	6
197	Characteristics of YBa2Cu3Oy step-edge Josephson junctions on MgO substrate. Physica C: Superconductivity and Its Applications, 1994, 229, 320-324.	0.6	12
198	Ratio indicator characterization for waveform reconstruction with jittered data. , 0, , .		0

Ratio indicator characterization for waveform reconstruction with jittered data. , 0, , . 198

#	Article	IF	CITATIONS
199	RZ Leonis Minoris bridging between ER Ursae Majoris-type dwarf nova and nova-like system. Publication of the Astronomical Society of Japan, 0, , .	1.0	10