Thomas Tscheulin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7133818/publications.pdf

Version: 2024-02-01

50 papers 3,233 citations

201658 27 h-index 197805 **49** g-index

54 all docs

54 docs citations

54 times ranked 3890 citing authors

#	Article	IF	CITATIONS
1	Insects in the City: Does Remnant Native Habitat Influence Insect Order Distributions?. Diversity, 2021, 13, 148.	1.7	5
2	Impacts of beekeeping on wild bee diversity and pollination networks in the Aegean Archipelago. Ecography, 2021, 44, 1353-1365.	4.5	15
3	Bumblebee diversity and pollination networks along the elevation gradient of Mount Olympus, Greece. Diversity and Distributions, 2020, 26, 1566-1581.	4.1	19
4	Effect of pan trap size on the diversity of sampled bees and abundance of bycatch. Journal of Insect Conservation, 2020, 24, 409-420.	1.4	14
5	Thermal tolerance varies with dimâ€light foraging and elevation in large carpenter bees (Hymenoptera:) Tj ETQq1 I	1 _{2:2} 78431	4 rgBT /Ove
6	Risk to pollinators from anthropogenic electro-magnetic radiation (EMR): Evidence and knowledge gaps. Science of the Total Environment, 2019, 695, 133833.	8.0	19
7	Fluorescent Pan Traps Affect the Capture Rate of Insect Orders in Different Ways. Insects, 2019, 10, 40.	2.2	31
8	Moderate fire severity is best for the diversity of most of the pollinator guilds in Mediterranean pine forests. Ecology, 2019, 100, e02615.	3.2	40
9	Linking farmer and beekeeper preferences with ecological knowledge to improve crop pollination. People and Nature, $2019, 1, 562-572$.	3.7	32
10	Pollination and reproduction of an invasive plant inside and outside its ancestral range. Acta Oecologica, 2018, 89, 11-20.	1.1	17
11	Disentangling the role of floral sensory stimuli in pollination networks. Nature Communications, 2018, 9, 1041.	12.8	83
12	Landscape spatial configuration is a key driver of wild bee demographics. Insect Science, 2018, 25, 172-182.	3.0	9
13	Climate drives plant–pollinator interactions even along smallâ€scale climate gradients: the case of the Aegean. Plant Biology, 2018, 20, 176-183.	3.8	27
14	Geography, climate, ecology: What is more important in determining bee diversity in the Aegean Archipelago?. Journal of Biogeography, 2018, 45, 2690-2700.	3.0	12
15	Differential Effects of Climate Warming on the Nectar Secretion of Early- and Late-Flowering Mediterranean Plants. Frontiers in Plant Science, 2018, 9, 874.	3.6	49
16	Diverse Marriage Patterns in Imperial Germany. Journal of Family History, 2017, 42, 37-53.	0.5	3
17	The effect of fire history in shaping diversity patterns of flower-visiting insects in post-fire Mediterranean pine forests. Biodiversity and Conservation, 2017, 26, 115-131.	2.6	32
18	Impact of honeybee (Apis mellifera L.) density on wild bee foraging behaviour. Journal of Apicultural Science, 2016, 60, 49-62.	0.4	16

#	Article	IF	CITATIONS
19	Bee response to fire regimes in Mediterranean pine forests: The role of nesting preference, trophic specialization, and body size. Basic and Applied Ecology, 2016, 17, 308-320.	2.7	30
20	Electromagnetic radiation of mobile telecommunication antennas affects the abundance and composition of wild pollinators. Journal of Insect Conservation, 2016, 20, 315-324.	1.4	30
21	Biogeographical patterns of the genus <i>Merodon</i> Meigen, 1803 (Diptera: Syrphidae) in islands of the eastern Mediterranean and adjacent mainland. Insect Conservation and Diversity, 2016, 9, 181-191.	3.0	19
22	Moderation is best: effects of grazing intensity on plant–flower visitor networks in Mediterranean communities. Ecological Applications, 2016, 26, 796-807.	3.8	40
23	Effects of grazing intensity on pollinator abundance and diversity, and on pollination services. Ecological Entomology, 2016, 41, 400-412.	2.2	54
24	Climate change reduces nectar secretion in two common Mediterranean plants. AoB PLANTS, 2015, 7, plv111.	2.3	46
25	Lessons from Red Data Books: Plant Vulnerability Increases with Floral Complexity. PLoS ONE, 2015, 10, e0138414.	2.5	20
26	Winners and losers of climate change for the genus Merodon (Diptera: Syrphidae) across the Balkan Peninsula. Ecological Modelling, 2015, 313, 201-211.	2.5	22
27	Moderation is best: effects of grazing intensity on plant-flower visitor networks in Mediterranean communities., 2015, , 150903033531005.		2
28	Interactive effect of floral abundance and semi-natural habitats on pollinators in field beans (Vicia) Tj ETQq0 0	0 rgBT/Ove	rlock 10 Tf 50
29	Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ, 2014, 2, e328.	2.0	183
30	The potential for indirect effects between coâ€flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecology Letters, 2014, 17, 1389-1399.	6.4	172
31	Urban biodiversity hotspots wait to get discovered: The example of the city of Ioannina, NW Greece. Landscape and Urban Planning, 2013, 120, 129-137.	7. 5	36
32	The presence of the invasive plant Solanum elaeagnifolium deters honeybees and increases pollen limitation in the native co-flowering species Glaucium flavum. Biological Invasions, 2013, 15, 385-393.	2.4	22
33	Investigating plantâ€"pollinator relationships in the Aegean: the approaches of the project POL-AEGIS (The pollinators of the Aegean archipelago: diversity and threats). Journal of Apicultural Research, 2013, 52, 106-117.	1.5	34
34	Pollinator community responses to the spatial population structure of wild plants: A pan-European approach. Basic and Applied Ecology, 2012, 13, 489-499.	2.7	28
35	Does spatial population structure affect seed set in pollen-limited Thymus capitatus?. Apidologie, 2011,		10
	42, 67-77.	2.0	10

#	Article	IF	CITATIONS
37	Influence of landscape context on the abundance and diversity of bees in Mediterranean olive groves. Bulletin of Entomological Research, 2011, 101, 557-564.	1.0	58
38	Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews, 2010, 85, 777-795.	10.4	259
39	Effects of patch size and density on flower visitation and seed set of wild plants: a panâ€European approach. Journal of Ecology, 2010, 98, 188-196.	4.0	199
40	Invasive plant integration into native plant–pollinator networks across Europe. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3887-3893.	2.6	175
41	Invasive weed facilitates incidence of Colorado potato beetle on potato crop. International Journal of Pest Management, 2009, 55, 165-173.	1.8	10
42	The impact of Solanum elaeagnifolium, an invasive plant in the Mediterranean, on the flower visitation and seed set of the native co-flowering species Glaucium flavum. Plant Ecology, 2009, 205, 77-85.	1.6	32
43	Enhancing pollinator biodiversity in intensive grasslands. Journal of Applied Ecology, 2009, 46, 369-379.	4.0	161
44	Responses of invertebrate trophic level, feeding guild and body size to the management of improved grassland field margins. Journal of Applied Ecology, 2009, 46, 920-929.	4.0	84
45	Landscape context and habitat type as drivers of bee diversity in European annual crops. Agriculture, Ecosystems and Environment, 2009, 133, 40-47.	5. 3	134
46	Effects of seed mixture and management on beetle assemblages of arable field margins. Agriculture, Ecosystems and Environment, 2008, 125, 246-254.	5. 3	33
47	Potential contribution of natural enemies to patterns of local adaptation in plants. New Phytologist, 2008, 180, 524-533.	7.3	53
48	MEASURING BEE DIVERSITY IN DIFFERENT EUROPEAN HABITATS AND BIOGEOGRAPHICAL REGIONS. Ecological Monographs, 2008, 78, 653-671.	5 . 4	562
49	The potential of grass field margin management for enhancing beetle diversity in intensive livestock farms. Journal of Applied Ecology, 2006, 44, 60-69.	4.0	70

 $Ultrastructure \ and \ motility \ pattern \ of \ the \ spermatozoa \ of \ Aleochara \ curtula \ (Coleoptera,) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overlock \ 10 \ Tf \ 50 \ 222 \ Td \ 1.4 \ 10 \ Tf \ 50 \ 222 \ Td \ 1.4 \ 10 \ Tf \ 50 \ 222 \ Td \ 1.4 \ 10 \ Tf \ 50 \ 222 \ Td \ 1.4 \ 10 \ Tf \ 50 \ 222 \ Td \ 1.4 \ 10 \ Tf \ 50 \ 222 \ Td \ 1.4 \ 10 \ Tf \ 50 \ 222 \ Td \ 1.4 \ 10 \ Tf \ 50 \ 222 \ Td \ 1.4 \ 10 \ Tf \ 50 \ 222 \ Td \ 1.4 \ 10 \ Tf \ 50 \ 222 \ Td \ 10 \ Tf \ 50 \ Tf \ 50$