Ana Pérez Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7133764/publications.pdf

Version: 2024-02-01

21 papers 2,157 citations

623188 14 h-index 752256 20 g-index

21 all docs

21 docs citations

times ranked

21

2868 citing authors

#	Article	IF	CITATIONS
1	Spontaneous Cardiomyocyte Differentiation From Adipose Tissue Stroma Cells. Circulation Research, 2004, 94, 223-229.	2.0	613
2	Pax7 and myogenic progression in skeletal muscle satellite cells. Journal of Cell Science, 2006, 119, 1824-1832.	1.2	464
3	Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. European Heart Journal, 2003, 24, 2012-2020.	1.0	293
4	A Population of Myogenic Stem Cells That Survives Skeletal Muscle Aging. Stem Cells, 2007, 25, 885-894.	1.4	267
5	Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. Journal of Thoracic and Cardiovascular Surgery, 2006, 131, 799-804.	0.4	129
6	Integrated Functions of Pax3 and Pax7 in the Regulation of Proliferation, Cell Size and Myogenic Differentiation. PLoS ONE, 2009, 4, e4475.	1.1	100
7	\hat{l}^2 -catenin promotes self-renewal of skeletal-muscle satellite cells. Journal of Cell Science, 2008, 121, 1373-1382.	1.2	59
8	Infiltration of plasma rich in growth factors enhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia. Journal of Controlled Release, 2015, 202, 31-39.	4.8	52
9	MMP-10 Is Required for Efficient Muscle Regeneration in Mouse Models of Injury and Muscular Dystrophy. Stem Cells, 2014, 32, 447-461.	1.4	39
10	The CXCR4/SDF1 Axis Improves Muscle Regeneration Through MMP-10 Activity. Stem Cells and Development, 2014, 23, 1417-1427.	1.1	36
11	Regulation by Nitric Oxide of Endotoxin-Induced Tissue Factor and Plasminogen Activator Inhibitor-1 in Endothelial Cells. Thrombosis and Haemostasis, 2002, 88, 1060-1065.	1.8	29
12	Effects of a Low Molecular Weight Heparin, Bemiparin, and Unfractionated Heparin on Hemostatic Properties of Endothelium. Clinical and Applied Thrombosis/Hemostasis, 2002, 8, 65-71.	0.7	19
13	Functional MMPâ€10 is required for efficient tissue repair after experimental hind limb ischemia. FASEB Journal, 2015, 29, 960-972.	0.2	19
14	Control of Myf5 activation in adult skeletal myonuclei requires ERK signalling. Cellular Signalling, 2007, 19, 1671-1680.	1.7	14
15	Evidence that Heparin but Not Hirudin Reduces PAI-1 Expression in Cultured Human Endothelial Cells. Thrombosis Research, 1999, 94, 137-145.	0.8	8
16	Skeletal myoblasts for cardiac repair in animal models. European Heart Journal Supplements, 2008, 10, K11-K15.	0.0	5
17	Regulation by nitric oxide of endotoxin-induced tissue factor and plasminogen activator inhibitor-1 in endothelial cells. Thrombosis and Haemostasis, 2002, 88, 1060-5.	1.8	4
18	Muscular and Tendon Degeneration after Achilles Rupture: New Insights into Future Repair Strategies. Biomedicines, 2022, 10, 19.	1.4	4

Ana Pérez Ruiz

#	Article	IF	CITATIONS
19	Deficiency of MMP-10 Aggravates the Diseased Phenotype of Aged Dystrophic Mice. Life, 2021, 11, 1398.	1.1	2
20	Local Preirradiation of Infarcted Cardiac Tissue Substantially Enhances Cell Engraftment. International Journal of Molecular Sciences, 2021, 22, 9126.	1.8	1
21	A quantitative method for the detection of muscle functional active and passive behavior recovery in models of damage-regeneration. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 1594-1603.	0.7	0